马氏距离与引导滤波加权的红外与可见光图像融合

Infrared and Visible Light Image Fusion Based on Mahalanobis Distance and Guided Filter Weighting

  • 摘要: 为使红外与可见光融合图像获得更好的分辨率和清晰度,提出基于非下采样轮廓波变换(non-subsampled contourlet transform, NSCT)的马氏距离加权拉普拉斯能量和与引导滤波改进(frequency tuned, FT)结合的红外与可见光图像融合算法。首先,对可见光图像进行对比度受限的自适应直方图均衡(contrast limited adaptive histogram equalization, CLAHE),并将红外图像与CLAHE处理后可见光图像进行NSCT变换,分解为低频和高频; 其次,对FT算法使用引导滤波进行改进,利用改进的FT算法提取红外图像显著性图自适应加权融合低频图像,对高频图像使用基于马氏距离加权的拉普拉斯能量和取大融合; 最后,对融合的低频和高频图像进行NSCT逆变换获得融合图像。实验结果表明,该融合方法相较其他传统融合方法,在主观视觉上和客观指标上都有较好的表现。

     

    Abstract: To improve the definition of fusion images and obtain better target information during the fusion of infrared and visible light images using the characteristics of non-subsampled contourlet transform(NSCT) coefficients, an Manalanobis distance weighted Laplacian energy combined with guided filtering is proposed to improve the frequency tuned (FT) algorithm. First, the visible light image is subjected to contrast limited adaptive histogram equalization(CLAHE), and the infrared image and the CLAHE processed visible light image are decomposed into a low-frequency approximate image and a high-frequency detail image through a multi-scale and multi-directional NSCT transform. Second, the FT algorithm improved by guided filtering isused to extract the significance graph of infrared images, the adaptive weighted fusion rule based on the significance graph of infrared images is used for low-frequency images, and the fusion rule based on the Laplace energy and maximum weighted by the Manalanobis distance is used for high-frequency images. Finally, the fusion image is obtained by the NSCT inverse transformation of the fused low-frequency and high-frequency images. The experimental results show that this fusion method has better performance in terms of subjective vision and objective indexes than other traditional fusion methods.

     

/

返回文章
返回