简易分时型长波红外偏振成像系统研究

陆高翔, 杨志勇, 宋俊辰

陆高翔, 杨志勇, 宋俊辰. 简易分时型长波红外偏振成像系统研究[J]. 红外技术, 2021, 43(8): 723-729.
引用本文: 陆高翔, 杨志勇, 宋俊辰. 简易分时型长波红外偏振成像系统研究[J]. 红外技术, 2021, 43(8): 723-729.
LU Gaoxiang, YANG Zhiyong, SONG Junchen. Simple Time-sharing Long Wave Infrared Polarization Imaging System[J]. Infrared Technology , 2021, 43(8): 723-729.
Citation: LU Gaoxiang, YANG Zhiyong, SONG Junchen. Simple Time-sharing Long Wave Infrared Polarization Imaging System[J]. Infrared Technology , 2021, 43(8): 723-729.

简易分时型长波红外偏振成像系统研究

详细信息
    作者简介:

    陆高翔(1996-),男,广东人,硕士研究生,研究红外偏振探测方向。E-mail:lu894118008@163.com

    通讯作者:

    杨志勇(1983-),男,河北人,副教授,硕士生导师,研究偏振光军事应用方向。E-mail:yangzhiyong121@126.com

  • 中图分类号: TP391

Simple Time-sharing Long Wave Infrared Polarization Imaging System

  • 摘要: 为了开展红外偏振成像技术研究工作,本文设计搭建了一个长波红外偏振成像系统,实现了目标分时成像。提出了一种改进的基于单像元非均匀性差分图像校正方法去除冷反射,基于Sobel边缘检测方法对图像进行配准,并对目标场景的偏振特性进行了分析。结果表明,设计搭建的系统能够获取目标场景的红外偏振信息,预处理后的图像能够满足实验需要,经过Stokes矢量方法得到的目标场景偏振图像边缘轮廓与细节信息更加丰富。为了进一步衡量实验系统的性能,对强度图像和偏振度图像进行了融合,融合后的图像与红外强度图像相比,图像评估质量得到明显提升,验证了实验系统的可行性。该技术在未来的复杂环境下提高目标探测效率具有应用价值。
    Abstract: To conduct research on infrared polarization imaging technology, this paper designs and builds a long-wave infrared polarization imaging system to achieve target time-sharing imaging. An improved differential image correction method based on single-pixel inhomogeneity was proposed to remove cold reflections; the image was registered using the Sobel edge detection method, and the polarization characteristics of the target scene were analyzed. The results demonstrate that the proposed system can obtain the infrared polarization information of the target scene, and the pre-processed image meets the requirements of the experiment. The edge contour and detailed information obtained by the Stokes vector method for the polarization image of the target scene are more abundant. To further measure the performance of the experimental system, the intensity and polarization degree images were fused. Compared with the infrared intensity image, the fused image has a significantly improved image evaluation quality, which verifies the feasibility of the experimental system. This technology can potentially improve target detection efficiency in complex environments in the future.
  • 图  1   长波红外偏振成像冷反射现象

    Figure  1.   Cold reflection phenomenon of long wave infrared polarization imaging

    图  2   传统方法去除冷反射效果图

    Figure  2.   Renderings of traditional method to remove cold reflection

    图  3   不同偏振方向的红外图像:(a1)、(a2)分别为偏振方向为0°和135°的红外图像;(b1)、(b2)为相对应的细节放大图

    Figure  3.   Infrared images of different polarization directions: (a1), (a2) are infrared images with polarization direction of 0° and 135° respectively; (b1) and (b2) are the enlarged images of corresponding details

    图  4   红外偏振冷反射去除效果图

    Figure  4.   Effect of infrared polarization cold reflection removal

    图  5   冷反射去除前后灰度值像素个数变化图

    Figure  5.   Changes of the number of gray pixels before and after cold reflection removal

    图  6   配准效果图

    Figure  6.   Registration effect diagram

    图  7   红外偏振信息计算流程图

    Figure  7.   Flow chart of infrared polarization information calculation

    图  8   办公楼图像

    Figure  8.   Office building.

    图  9   水壶偏振特性图

    Figure  9.   Polarization characteristics of the kettle

    图  10   树林偏振特性图

    Figure  10.   Polarization characteristics of trees

    表  1   长波红外偏振成像系统参数

    Table  1   Parameters of long-wave infrared polarization imagingsystem

    Parameter Value
    Camera size/mm
    Resolution ratio pixel
    Wavelength coverage/nm
    Detection range/m
    Polarizer size/mm
    Extinction ratio
    224×179.5×430
    640×512
    7500-14000
    < 8600
    50×50
    10000:1
    下载: 导出CSV

    表  2   图 9图像评估结果

    Table  2   Evaluation results of image in Fig.9

    Information
    entropy
    Standard deviation Average gradient
    S0
    DOLP
    Fusion
    Rate/%
    5.8460
    5.9859
    7.0347
    20.3%
    59.2586
    20.4295
    35.9071
    -39.4%
    3.0030
    7.2133
    7.5963
    152.9%
    下载: 导出CSV

    表  3   图 10图像评估结果

    Table  3   Evaluation results of image in Fig.10

    Information
    entropy
    Standard deviation Average gradient
    S0
    DOLP
    Fusion
    Rate/%
    6.6782
    7.0173
    7.1894
    7.7%
    23.7797
    35.7427
    37.7977
    41.1%
    3.3628
    10.7731
    10.6651
    217.1%
    下载: 导出CSV
  • [1] 刘智嘉, 贾鹏, 夏寅辉, 等. 基于红外与可见光图像融合技术发展与性能评价[J]. 激光与红外, 2019, 49(5): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201905022.htm

    LIU Zhijia, JIA Peng, XIA Yinhui, et al. Development and performance evaluation of infrared and visible imagefusion technology[J]. Laser and Infrared, 2019, 49(5): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201905022.htm

    [2] 赵永强, 马位民, 李磊磊. 红外偏振成像进展[J]. 飞控与探测, 2019, 2(3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-FKTC201903008.htm

    ZHAO Yongqiang, MA Weimin, LI Leilei. Progress in infrared polarization imaging[J]. Flight Control and Detection, 2019, 2(3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-FKTC201903008.htm

    [3]

    Aron Y, Gonau Y. Polarization in the LWIR: a method to improve target aquisition[C]//Proceedings of SPIE, 2005: (DOI: 10.1117/12.605316).

    [4] 杨之文, 高胜钢, 王培纲. 几种地物反射光的偏振特性[J]. 光学学报, 2005, 25(2): 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB20050200L.htm

    YANG Zhiwen, GAO Shenggang, WANG Peigang. Polarization characteristics of reflected light of several ground objects[J]. Journal of Optics, 2005, 25(2): 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB20050200L.htm

    [5] 胡冬梅, 刘泉, 牛国成. 可见光偏振成像系统对低对比度目标的探测[J]. 激光与光电子学进展, 2017, 54(6): 61101. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201706014.htm

    HU Dongmei, LIU Quan, NIU Guocheng. Detection of low contrast objects by visible light polarization imaging system[J]. Advances in Laser and Optoelectronics, 2017, 54(6): 61101. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201706014.htm

    [6] 杨敬钰, 徐吉, 李坤, 等. 简易偏振成像系统及应用[J]. 天津大学学报, 2020, 53(3): 237-242. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202003003.htm

    YANG Jingyu, XU Ji, LI Kun, et al. Simple polarization imaging system and its application[J]. Journal of Tianjin University, 2020, 53(3): 237-242. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202003003.htm

    [7] 林威. 分振幅式偏振探测系统的图像配准研究[D]. 大连: 大连理工大学, 2018.

    LIN Wei. Study on Image Registration of Fractional Amplitude Polarization Detection System[D]. Dalian: Dalian University of Technology, 2018.

    [8] 王军, 高教波, 丁娜, 等. 红外偏振成像对伪装目标的探测识别研究[J]. 应用光学, 2012, 33(3): 441-445. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201203003.htm

    WANG Jun, GAO Jiaobo, DING Na, et al. Detection and identification of camouflaged targets by infrared polarization imaging[J]. Applied Optics, 2012, 33(3): 441-445. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201203003.htm

    [9]

    Woolley M, Michalson J, Roamno J. Observations on the polarimetric imagery collection experiment database[C]//Proc of SPIE, 2011, 8160(22): 81600P.

    [10] 郭忠义, 汪信洋, 李德奎, 等. 偏振信息传输理论及应用进展[J]. 红外与激光工程, 2020(6): 16-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202006003.htm

    GUO Zhongyi, WANG Xingyang, LI Dekui, et al. Progress of polarization information transmission theory and application[J]. Infrared and Laser Engineering, 2020(6): 16-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202006003.htm

    [11] 谢洪波, 孟庆斌, 杨磊, 等. 中波红外光学系统无热化设计和冷反射抑制[J]. 应用光学, 2017, 38(3): 352-357. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201703003.htm

    XIE Hongbo, MENG Qingbin, YANG Lei, et al. Heat-free design and cold reflection suppression of medium wave infrared optical system[J]. Applied Optics, 2017, 38(3): 352-357. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201703003.htm

    [12] 张良. 凝视型红外光学系统中的冷反射现象[J]. 红外与激光工程, 2006, 35(S2): 214-216. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2006S2002.htm

    ZHANG Liang. Cold reflection in staring infrared optical system[J]. Infrared and Laser Engineering, 2006, 35(S2): 214-216. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2006S2002.htm

    [13] 杨敏, 徐文斌, 田禹泽, 等. 面向运动目标探测的分时型红外偏振成像系统[J]. 光学学报, 2020, 40(15): 1511001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202015008.htm

    YANG Min, XU Wenbin, TIAN Yuze, et al. Time-sharing infrared polarization imaging system for moving target detection[J]. Acta Optica Sinica, 2020, 40(15): 1511001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202015008.htm

图(10)  /  表(3)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  112
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-28
  • 修回日期:  2020-11-26
  • 刊出日期:  2021-08-19

目录

    /

    返回文章
    返回