基于FFWA的自适应Canny飞机蒙皮红外图像边缘检测

王坤, 刘沛伦, 王力

王坤, 刘沛伦, 王力. 基于FFWA的自适应Canny飞机蒙皮红外图像边缘检测[J]. 红外技术, 2021, 43(5): 443-454.
引用本文: 王坤, 刘沛伦, 王力. 基于FFWA的自适应Canny飞机蒙皮红外图像边缘检测[J]. 红外技术, 2021, 43(5): 443-454.
WANG Kun, LIU Peilun, WANG Li. Infrared Image Adaptive Canny Edge-detection of Aircraft Skin Based on Fast Fireworks Algorithm[J]. Infrared Technology , 2021, 43(5): 443-454.
Citation: WANG Kun, LIU Peilun, WANG Li. Infrared Image Adaptive Canny Edge-detection of Aircraft Skin Based on Fast Fireworks Algorithm[J]. Infrared Technology , 2021, 43(5): 443-454.

基于FFWA的自适应Canny飞机蒙皮红外图像边缘检测

基金项目: 

国家自然科学基金 U1733119

中央高校基本科研业务费项目中国民航大学专项 3122018C001

详细信息
    作者简介:

    王坤(1978-),女,博士,副教授,主要研究方向为图像处理、故障检测分析。E-mail:96288851@qq.com

  • 中图分类号: TP274.52

Infrared Image Adaptive Canny Edge-detection of Aircraft Skin Based on Fast Fireworks Algorithm

  • 摘要: 针对传统自适应Canny算法阈值选取精度低、速度慢的不足,提出基于快速烟花算法(Fast Fireworks Algorithm,FFWA)的自适应Canny边缘检测算法,该算法采用最大类间方差法结合快速烟花算法对检测和连接边缘的高低阈值进行自动设定。快速烟花算法对传统烟花算法的爆炸半径,爆炸火花产生方式与选择策略进行改进。实验结果表明,快速烟花算法比传统烟花算法的计算时间节省了36%,在稳定性方面也有了可观的提升,基于快速烟花算法的自适应Canny边缘检测算法在精度保持不变的情况下,计算速度比改进前加快了49%,使飞机蒙皮损伤热像图的边缘检测效果更加理想。
    Abstract: To address the low accuracy and slow speed of the traditional adaptive Canny algorithm in selecting the threshold value, an improved algorithm is herein proposed. The proposed algorithm utilizes the Otsu and fast fireworks algorithm (FFWA) to automatically set the high and low detection thresholds and the connecting edges. Consequently, the explosion radius, the production method, and selection strategy are improved as compared to those of the traditional fireworks algorithm, thereby increasing the speed and accuracy of the Otsu calculation. The experimental results show that the calculation speed of the fast fireworks algorithm increased by 36% as compared to that of the traditional fireworks algorithm. Moreover, the stability also increased considerably. The improved adaptive Canny algorithm not only maintains the same precision but also decreases the calculation time by 49%. This makes the result of edge detection of aircraft skin infrared images more ideal.
  • 图  1   烟花爆炸示意图

    Figure  1.   Schematic diagram of fireworks explosion

    图  2   传统烟花算法流程图

    Figure  2.   Flowchart of traditional Fireworks Algorithm

    图  3   FFWA在Sphere函数上自适应爆炸半径的取值

    Figure  3.   The value of adaptive explosion radius Of FFWA in Sphere function

    图  4   快速烟花算法流程图

    Figure  4.   Fast fireworks algorithm flow chart

    图  5   基于FFWA的自适应Canny边缘检测算法流程图

    Figure  5.   Flowchart of adaptive Canny edge detection algorithm based on FFWA

    图  6   Sphere函数收敛曲线

    Figure  6.   Sphere function convergence curves

    图  7   Ackley函数收敛曲线

    Figure  7.   Ackley function convergence curves

    图  8   Griewank函数收敛曲线

    Figure  8.   Griewank function convergence curves

    图  9   Six-hump函数收敛曲线

    Figure  9.   Six-hump function convergence curves

    图  10   积水损伤加热结束后不同时刻图像

    Figure  10.   Images of different moments of hydrops

    图  11   脱粘损伤加热结束后不同时刻图像

    Figure  11.   Images of different moments of debonding

    图  12   裂痕损伤加热结束后不同时刻图像

    Figure  12.   Images of different moments of crack

    图  13   腐蚀损伤加热结束后不同时刻图像

    Figure  13.   Images of different moments of Corrosion

    图  14   积水损伤红外热像图阈值计算的收敛曲线

    Figure  14.   Convergence curves of hydrops

    图  15   脱粘损伤红外热像图阈值计算的收敛曲线

    Figure  15.   Convergence curves of debonding

    图  16   飞机蒙皮积水损伤边缘检测结果

    Figure  16.   Edge detection results of hydrops

    图  17   飞机蒙皮脱粘损伤边缘检测结果

    Figure  17.   Edge detection results of debonding

    图  18   飞机蒙皮裂痕损伤边缘检测结果

    Figure  18.   Edge detection results of cracks

    图  19   飞机蒙皮腐蚀损伤边缘检测结果

    Figure  19.   Edge detection results of corrosion

    表  1   基准测试函数

    Table  1   Standard test function

    Name Function Range Dimension Optimal
    Sphere ${f_1}\left( x \right) = \sum\limits_{i = 1}^n {x_i^2} $ [-100, 100]d 30 0
    Ackley ${f_2}(x) = - 20\exp ( - 0.2\sqrt {\sum\limits_{i = 1}^d {x_i^2} } ) - \exp (\frac{1}{d})\sum\limits_{i = 1}^d {\cos (2{\rm{ \mathsf{ π} }}{x_i})} + 20 - e$ [-32, 32]d 30 0
    Griewank ${f_3}(x) = \frac{1}{{4000}}\sum\limits_{i = 1}^d {x_i^2} - \prod\limits_{i = 1}^d {\cos (\frac{{{x_i}}}{{\sqrt i }})} + 1 $ [-600, 600]d 30 0
    Six-Hump Camel-Black ${f_4}(x) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + {x_1}{x_2} - 4x_2^2 + 4x_2^4 $ [-5, 5]2 2 -1.03162
    下载: 导出CSV

    表  2   五种算法的参数设置

    Table  2   Parameter Settings

    Algorithm Common Parameters Mutations Acceptance probability Shrinkage Rate Transfer parameters Control factor Mutation probability
    FFWA N=5
    Er=20
    En=20
    a=0.2
    b=0.8
    1 0.99
    FWA 2
    IFWA 2 21
    CFWA 2 0.15
    dynFWA kd=1.2
    sx=0.8
    下载: 导出CSV

    表  3   测试函数测试结果对比

    Table  3   Test function test results comparison

    Algorithm Fun Optimal Worst Average Run Time/s Fun Optimal Worst Average Run Time/s
    FFWA f1 0 0 0 0.85 f3 0 1.078×10-5 2.501×10-5 1.04
    FWA 0 2.887×10-2 5.559×10-5 1.33 9.716×10-5 7.410×10-1 2.552×10-5 1.50
    dynFWA 1.636×10-4 1.222 1.328×10-3 1.06 3.414×10-4 1.053 5.513×10-3 1.19
    IFWA 4.584×10-1 4.839×10-3 4.837×10-2 1.28 1.113E-01 6.591×10-1 4.447×10-1 1.51
    CFWA 2.032×10-5 2.996×10-1 2.842×10-5 1.25 0 2.285×10-1 4.311×10-4 1.46
    FFWA f2 1.216×10-5 1.078×10-1 2.601×10-4 1.03 f4 -1.031628 -1.031628 -1.031628 0.69
    FWA 1.215×10-5 1.880×10-1 2.634×10-4 1.51 -1.031628 -1.031613 -1.031620 1.04
    dynFWA 5.001×10-4 4.203 2.611×10-3 1.27 -1.031628 0.007603 -1.031614 0.87
    IFWA 2.093×10-4 1.666 4.537×10-4 1.46 -1.031628 -1.031628 -1.031628 0.96
    CFWA 8.282×10-5 6.323×10-4 2.220×10-4 1.46 -1.031628 -1.031624 -1.031626 1.03
    下载: 导出CSV

    表  4   各个算法的实验结果

    Table  4   The experimental results of each algorithm

    Mean Convergence Time/s Total Error Average number of iterations
    Hyd Deb Cra Cor Hyd Deb Cra Cor Hyd Deb Cra Cor
    t=20 s FFWA 1.116 1.112 1.116 1.112 0 0 1 0 4.5 4 5 4.5
    FWA 1.752 1.750 1.752 1.750 9 11 9 10 6.5 6.5 6 6
    dynFWA 1.429 1.411 1.429 1.411 4 2 4 3 5 5 6 5
    IFWA 1.644 1.640 1.644 1.640 0 1 2 1 5 4.5 5 5
    CFWA 1.539 1.537 1.539 1.537 0 2 0 1 5 5 5.5 4
    t=100 s FFWA 1.100 1.115 1.100 1.115 0 1 0 1 4 4.5 4 5
    FWA 1.771 1.690 1.771 1.690 10 9 9 7 6 6 5 6
    dynFWA 1.430 1.381 1.430 1.381 1 2 4 3 5 5 5 6
    IFWA 1.644 1.640 1.644 1.640 1 0 0 2 5 4.5 4 5
    CFWA 1.539 1.537 1.539 1.537 0 0 2 4 5 6 5 4.5
    t=200 s FFWA 1.110 1.109 1.112 1.110 0 1 0 1 5 5 4.5 6
    FWA 1.746 1.742 1.757 1.751 5 7 9 10 6.5 6 5 7
    dynFWA 1.427 1.408 1.423 1.412 1 4 4 6 5 5 4.5 4.5
    IFWA 1.647 1.639 1.645 1.640 0 1 0 2 5 4.5 4 4
    CFWA 1.539 1.537 1.537 1.537 1 0 0 1 5 5 5 4.5
    下载: 导出CSV

    表  5   4种算法检测对比结果

    Table  5   The comparison results of four algorithms

    Algorithm Run Time/s Threshold PFOM
    Hyd Deb Cra Cor Hyd Deb Cra Cor Hyd Deb Cra Cor
    Proposed method 2.18 2.18 2.06 2.13 133 137 144 96 0.83 0.96 0.87 0.81
    Global threshold method 3.15 3.15 3.12 3.20 139 120 130 112 0.51 0.74 0.76 0.76
    Maximum entropy method 4.59 4.58 4.51 5.02 120 120 182 80 0.70 0.96 0.83 0.85
    Otsu method 4.33 4.29 4.30 4.17 133 137 144 96 0.83 0.96 0.87 0.81
    下载: 导出CSV
  • [1] 王昊. 基于机器视觉的飞机蒙皮损伤检测与寿命分析方法[D]. 南京: 南京航空航天大学, 2013.

    WANG Hao. Aircraft Skin Damage Detection and Life Cycle Analysis Method Based on Machine Vision[D]. Nanjing: Nanjing University College of Automation Engineering, 2013.

    [2]

    CHENG Sheng, FENG Jianfei, DENG Faqing. A Summary of Nondestructive Testing Application in Chinese Civil Aircraft Industry[J]. Nondestructive Testing, 2017, 39(4): 76-79. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSJC201704017.htm

    [3]

    Ammar K Al-Musawi, Fatih Anayi, Michael Packianather. Three-phase induction motor fault detection based on thermal image segmentation[J]. Infrared Physics & Technology, 2020, 104: 1350-4495. http://www.sciencedirect.com/science/article/pii/S1350449519304207

    [4]

    SHI H, Ward R. Canny edge based image expansion[C]//Circuits and Systems, IEEE International Symposium on, 2002: 1-1. DOI: 10.1109/ISCAS.2002.1009958.

    [5] 李二森, 张保明, 周晓明, 等. 自适应Canny边缘检测算法研究[J]. 测绘科学, 2008, 66(6): 120-121. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200806042.htm

    LI Ersen, ZHANG Baoming, ZHOU Xiaoming, et al. Research on the algorithm of adaptive Canny edge detection[J]. Surveying and Mapping Science, 2008, 66(6): 120-121. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200806042.htm

    [6] 杜磊, 李立轻, 汪军, 等. 几种基于图像自适应阈值分割的织物疵点检测方法比较[J]. 纺织学报, 2014, 35(6): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-FZXB201406011.htm

    DU Lei, LI Liqing, WANG Jun, et al. Comparison of several fabric defect detection methods based on image adaptive threshold segmentation[J]. Textile Journal, 2014, 35(6): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-FZXB201406011.htm

    [7] 郭方方, 严高师, 李旭东. 一种改进的基于Otsu算法的Canny红外边缘检测方法[J]. 红外, 2010, 31(7): 24-27. DOI: 10.3969/j.issn.1672-8785.2010.07.005

    GUO Fangfang, YAN Gaoshi, LI Xudong, et al. An Improved Canny Infrared Edge Detection Method Based on Otsu Algorithm[J]. Infrared, 2010, 31(7): 24-27 DOI: 10.3969/j.issn.1672-8785.2010.07.005

    [8] 宋人杰, 刘超, 王保军. 一种自适应的Canny边缘检测算法[J]. 南京邮电大学学报: 自然科学版, 2018, 176(3): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYD201803012.htm

    SONG Renjie, LIU Chao, WANG Baojun. An adaptive Canny edge detection algorithm[J]. Journal of Nanjing University of Posts and Telecommunications: Natural Science Edition, 2018, 176(3): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYD201803012.htm

    [9]

    TAN Y, ZHU Y. Fireworks Algorithm for Optimization[C]//Advances in Swarm Intelligence, First International Conference, 2010: 12-15.

    [10] 谭营. 烟花算法引论[M]. 北京: 科学出版社, 2015.

    TAN Ying. Introduction to Fireworks Algorithm[M]. Beijing: Science Press, 2015.

    [11]

    TAN Ying, ZHENG Shaoqiu. Recent advances in fireworks algorithm[J]. CAAI Transactions on Intelligent Systems, 2014, 9(5) : 515-528. http://d.wanfangdata.com.cn/periodical/xdkjyc201405001

    [12] 王亮, 郭星. 基于柯西烟花算法的大规模服务组合优化[J]. 计算机工程与应用, 2018, 54(24): 34-40. DOI: 10.3778/j.issn.1002-8331.1712-0342

    WANG Liang, GUO Xing. Large-scale service portfolio optimization based on Cauchy fireworks algorithm[J]. Computer Engineering and Applications, 2018, 54(24): 34-40. DOI: 10.3778/j.issn.1002-8331.1712-0342

    [13]

    ZHENG S, LI J, Janecek A, et al. A Cooperative Framework for Fireworks Algorithm[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(1): 27-41. DOI: 10.1109/TCBB.2015.2497227

    [14] 张水平, 李殷俊, 高栋, 等. 带有动态爆炸半径的增强型烟花算法[J]. 计算机工程与应用, 2019, 961(18): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202018007.htm

    ZHANG Shuiping, LI Yinjun, GAO Dong. Enhanced fireworks algorithm with dynamic explosion radius[J]. Computer Engineering and Applications, 2019, 961(18): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202018007.htm

    [15]

    LI J, ZHENG S, TAN Y. The Effect of Information Utilization: Introducing a Novel Guiding Spark in the Fireworks Algorithm[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(1): 491-501. http://ieeexplore.ieee.org/document/7508443/

    [16] 陶小华, 陈基漓, 谢晓兰. 具有导向功能的改进烟花算法[J]. 计算机工程与设计, 2019, 40(12): 3479-3486. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201912020.htm

    TAO Xiaohua, CHEN Jili, XIE Xiaolan. Improved fireworks algorithm with guidance function[J]. Computer Engineering and Design, 2019, 40(12): 3479-3486. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201912020.htm

    [17]

    YANG W, KE Liangjun. An improved fireworks algorithm for the capacitated vehicle routing problem[J]. Frontiers of Computer Science, 2019, 13(3): 552-564. DOI: 10.1007/s11704-017-6418-9

    [18]

    LIU J, ZHENG S, TAN Y. The Improvement on Controlling Exploration and Exploitation of Firework Algorithm[M]. Advances in Swarm Intelligence Berlin: Springer, 2013: 11-23.

    [19]

    ZHENG S, Janecek A, Tan Y. Enhanced Fireworks Algorithm[C]//Evolutionary Computation (CEC), IEEE Congress on., 2013: 2069-2077.

    [20]

    RONG Cheng, BAI Yanping, ZHAO Yu, et al. Improved fireworks algorithm with information exchange for function optimization[J]. Knowledge-Based Systems, 2019, 163: 82-90. DOI: 10.1016/j.knosys.2018.08.016

    [21]

    ZHENG S, Janecek A, LI J, et al. Dynamic search in fireworks algorithm[C]//2014 IEEE Congress on Evolutionary Computation (CEC), 2014: 3222-3229.

    [22] 李姗姗, 陈莉, 张永新, 等. 结合四元数与最小核值相似区的边缘检测[J]. 中国图象图形学报, 2017, 22(7): 915-925. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201707006.htm

    LI Shanshan, CHEN Li, ZHANG Yongxin, et al. The Edge Detection algorithm Combining Dimension Univalue segment Depreciation and Quaternion[J]. Journal of China Images & amp; Graphics, 2017, 22(7): 915-925. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201707006.htm

  • 期刊类型引用(8)

    1. 张宇,张健,齐林. 基于遗传算法优化Canny算子的织绣文物纹样抽取方法研究. 丝绸. 2024(06): 1-12 . 百度学术
    2. 严丹昭,陈晶,兰旺耀,廖一鹏. 基于表层温度深度学习的电缆接头绝缘劣化非接触式诊断. 红外技术. 2024(06): 712-721 . 本站查看
    3. 王鑫刚,田军委,于亚琳,王沁,张杰. 改进Canny算法的红外人脸图像边缘轮廓提取. 应用光学. 2023(01): 61-70 . 百度学术
    4. 肖建英,邓强. 三维光学模型的激光图像边缘检测研究. 激光杂志. 2023(08): 110-114 . 百度学术
    5. 涂伟沪,蔡玲霞,李学军. 基于改进蝗虫算法优化Canny算子的鸡蛋裂纹图像检测. 食品与机械. 2022(02): 167-172+202 . 百度学术
    6. 高海韬,李丹宁,王彬,唐鑫鑫. 运动模糊图像PSF参数估计方法改进及图像复原. 计算机工程. 2022(09): 197-203+212 . 百度学术
    7. 赵一鸣,胡燕海. 用于小型注塑件边缘提取的改进坎尼算法. 机械制造. 2022(07): 1-5+11 . 百度学术
    8. 杨林超,张新锋,刘康. 管道机器人采集图像缺陷检测方法研究. 工业仪表与自动化装置. 2021(06): 48-51+64 . 百度学术

    其他类型引用(5)

图(19)  /  表(5)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  160
  • PDF下载量:  60
  • 被引次数: 13
出版历程
  • 收稿日期:  2020-06-05
  • 修回日期:  2020-07-12
  • 刊出日期:  2021-05-21

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日