Research Progress of Pulse Tube With Acoustic Power Recovery
-
摘要:
由于具有低振动、长寿命、高可靠性等优点,脉管制冷机在高温超导和星载红外器件等领域的应用具有明显优势,近年来也逐渐成为研究的热点领域之一。然而,传统调相方式的脉管制冷机因热端声功以热量形式耗散,本征制冷效率较斯特林制冷机低。采用声功回收技术可以显著提高制冷效率,降低重量,对于高温区大冷量制冷机的性能提升更为显著。本文通过对国内外脉管制冷机声功回收方式的研究进展进行分析,展望了斯特林型脉管制冷机声功回收的应用前景和发展趋势。最后阐述了在昆明物理研究所应用的声功回收型脉管制冷机。
Abstract:Owing to its advantages of low vibration, long lifespan, and high reliability, the pulse tube refrigerator has demonstrated significant potential in applications such as high-temperature superconducting systems and satellite-borne infrared devices. As a result, it has become one of the prominent research areas in recent years. However, the inherent refrigeration efficiency of a pulse tube refrigerator using traditional phase modulation methods is generally lower than that of a Stirling refrigerator. This is primarily because the acoustic power at the hot end is dissipated as heat. Recovering this acoustic power can enhance refrigeration efficiency and reduce overall system weight, which is especially beneficial for refrigerators with high cooling capacities operating in high-temperature environments. This paper reviews the current state of research on acoustic power recovery methods for pulse tube refrigerators, both domestically and internationally, and explores their application prospects and development trends. Finally, a pulse tube refrigerator incorporating acoustic power recovery suitable for use in a KIP unit is presented.
-
Keywords:
- pulse tube /
- acoustic power recovery /
- application prospect
-
-
图 2 热端气动型斯特林脉管制冷机结构[12]
Figure 2. The structure of the hot-end pneumatic-type pulse tube refrigerator[12]
Note: 1. Post-stage air cooler; 2. Regenerator; 3. Adsorption heat exchanger; 4. Pulse; 5. Connecting pipe; 6. Connecting pipe; 7. Compressor spring; 8. Linear motor; 9. Back pressure chanmber; 10. Piston; 11.Compression chamber; 12. Excluder spring; 13. Compression rod; 14. Relief chamber; 15. Ejector; 16a. Expansion chamber; 16b. Back pressure chamber
图 5 带声功回收移相器的脉管制冷机结构
Figure 5. The structure of pulse tube refrigerator with acoustic power recovery phase shifter
Note: 1. Air inlet; 2. Blow vent; 3. Counterbalance; 4. Blade spring; 5. Front cover; 6. Expasion chamber; 7. Cylinder; 8. Treadle phase shifter; 9. The second compression chamber; 10. Buffer room; 11. Spring; 12. Back cover; 13. Linear variable differential transformer
图 7 带质量-弹簧能量反馈的声功回收脉管制冷机
Figure 7. Acoustic power recovery pulse tube refrigerator with quality and spring energy feedback
Note: Com: Compressor; TP: Transport tubes; C1: Conical mouthpiece 1; AC: After-end cooler; Reg: refrigerator; CHX: Cold end heat exchanger; PT: Pulse; HHX: Hot end heat exchanger; C2: Conical mouthpiece 2; CT: Connecting tubes
-
[1] Gifford W E, Longsworth R C. Pulse tube refrigeration[J]. Journal of Engineering for Industry, 1964, 86: 264-268. DOI: 10.1115/1.3670530
[2] Gifford W E, Longsworth R C. Pulse tube refrigeration progress[J]. Advances in Cryogenic Engineering, 1964, 10(B): 69-79.
[3] Gifford W E, Kyanka G H. Reversible pulse tube refrigeration[J]. Advances in Cryogenic Engineering, 1966, 12: 619-630.
[4] 吴镁. 声功回收级联型脉管制冷机研究[D]. 杭州: 浙江大学, 2015. WU Mei. Study on a Cascade Pulse Tube Cryocooler with Work Recovery[D]. Hangzhou: Zhejiang University, 2015.
[5] 王龙一, 刘东立, 王博, 等. 基于脉管内调相的声功回收型脉管制冷机[P]. 中国: 201210587580. X, 2013. WANG Longyi, LIU Dongli, WANG Bo, et al. A Acoustic Power Recovery Pulse Tube Refrigerator Based on the Phase Modulation in the Tube Interior[P]. China: 201210587580. X, 2013.
[6] 朱佳凯, 宋豫京, 王龙一, 等. 一种声功回收型级联脉管制冷机[C]// 第十一届全国低温工程大会论文集, 2013: 342-347. ZHU Jiakai, SONG Yujing, WANG Longyi, et al. A cascade pulse tube with work recovery[C]//Proceedings of the 11th National Cryogenic Engineering Conference, 2013: 342-347.
[7] 姜晓. 斯特林型脉管制冷机声功匹配机理与实验研究[D]. 杭州: 浙江大学, 2017. JIANG Xiao. Study on Acoustic Power Match in a Stirling Pulse Tube Cryocooler[D]. Hangzhou: Zhejiang university, 2017.
[8] 王龙一. 脉管制冷声-力-电匹配及其逼近卡诺效率的方法[D]. 杭州: 浙江大学, 2016. WANG Longyi. A Coustic-Mechanical-Electrical Coupling and an Approach to Carnot Efficiency of Pulse Tube Refrigeration[D]. Hangzhou: Zhejiang University, 2016.
[9] Matsubara Y, Miyake A. A Iternative methods of the orifice pulse tube refrigerator[C]//International Cryocooler Conference 05, 1988: 127-135.
[10] Matsubara Y. Classification of pulse tube cryocoolers[C]//International Cryogenic Engineering Conferenc, 1988: 11-16.
[11] Ishizaki Y, Ishizaki E. Experimental performance of modified pulse tube refrigerator below 80 K down to 23 K[C]//Proceedings of 7th International Cryocooler Conference, 1992: 140-145.
[12] ZHU S, NOGAWA M. Pulse tube stirling machine with warm gas-driven displacer[J]. Cryogenics, 2010, 50(5): 320-330. DOI: 10.1016/j.cryogenics.2010.01.011
[13] 胡剑英, 罗二仓, 吴张华, 等. 多缸脉冲管制冷机的调相机理研究[J]. 工程热物理学报, 2013, 34(2): 229-232. HU Jianying, LUO Ercang, WU Zhanghua, et al. Research on phase modulation mechanisms in multi-cylinder pulse tube cryocoolers[J]. Journal of Engineering Thermophysics, 2013, 34(2): 229-232.
[14] HU J Y, LUO E C, ZHANG L M, et al. A double-acting thermoacoustic cryocooler for high temperature superconducting electric power grids[J]. Applied Energy, 2013, 112: 1166-1170. DOI: 10.1016/j.apenergy.2013.01.070
[15] ZHU S. Step piston pulse tube refrigerator[J]. Cryogenics, 2014, 64: 63-69. DOI: 10.1016/j.cryogenics.2014.09.006
[16] LIN Y Z, ZHU S W. Numerical investigation of the new phase shifter for pulse tube refrigerator-inertancetube combining with step-piston[J]. International Journal of Refrigeration, 2019, 97: 42-48. DOI: 10.1016/j.ijrefrig.2018.09.016
[17] DENG Weifeng, LIU Shaoshuai, CHEN Xi, et al. A work-recovery pulse tube refrigerator for natural gas liquefaction[J]. Cryogenics, 2020, 111: 1-8.
[18] 陈曦, 缪源, 杨易坤, 等. 一种电磁阀以及一拖二功回收型脉管制冷机[P]. 中国: CN 108869774 A, 2018-11-23. CHEN Xi, MIU Yuan, YANG Yikun, et al. An electromagnetic valve and a dual-piston active-buffer pulse tube cryocooler with work recovery[P]. China: CN 108869774 A, 2018-11-23.
[19] 蒋珍华, 吴亦农, 黄政, 等. 一种柱弹簧支撑的主动活塞调相功回收一体式脉管制冷机[P]. 中国: CN 115289713 A, 2022-07-11. JIANG Zhenhua, WU Yilong, HUANG Zheng, et al. An integrated linear spring supported active-piston phase shifting and work recovery pulse tube cryocooler[P]. China: CN 115289713 A, 2022-07-11.
[20] KI T, JEONG S. Design and analysis of compact work-recovery phase shifter for pulse tube refrigerator[J]. Cryogenics, 2012, 52(2/3): 105-110.
[21] WANG K, DUBEY S. CHOO F H, et al. Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism[J]. Applied Energy, 2016, 171: 172-183. DOI: 10.1016/j.apenergy.2016.03.002
[22] Swift G W, Gardner D L, Backhaus S. Acoustic recovery of lost power in pulse tube refrigerator[J]. J. Acoust. Soc. Am, 1999, 105(2): 711-724. DOI: 10.1121/1.426262
[23] ZHU S, Kawano S, Nogawa M, et al. Pulse tube refrigerator 8, 389, 819, 2002. [P]. U. S. Patent.
[24] Swift G W, Gardner D L, Backhaus S N. Quarter-wave pulse tube[J]. Cryogenics, 2011, 51(10): 575-583. DOI: 10.1016/j.cryogenics.2011.08.001
[25] XU J, YU G, ZHANG L, et al. Numerical investigation on a 300 Hz pulse tube cryocooler driven by a three-stage traveling-wave thermo-acoustic heat engine[J]. Cryogenics, 2015, 71: 68-75. DOI: 10.1016/j.cryogenics.2015.06.003
[26] XU J, HU J, ZHANG L, et al. Effect of coupling position on a looped three-stage thermo-acoustically-driven pulse tube cryocooler [J]. Energy, 2015, 93: 994-998. DOI: 10.1016/j.energy.2015.09.099