基于变换域VGGNet19的红外与可见光图像融合

李永萍, 杨艳春, 党建武, 王阳萍

李永萍, 杨艳春, 党建武, 王阳萍. 基于变换域VGGNet19的红外与可见光图像融合[J]. 红外技术, 2022, 44(12): 1293-1300.
引用本文: 李永萍, 杨艳春, 党建武, 王阳萍. 基于变换域VGGNet19的红外与可见光图像融合[J]. 红外技术, 2022, 44(12): 1293-1300.
LI Yongping, YANG Yanchun, DANG Jianwu, WANG Yangping. Infrared and Visible Image Fusion Based on Transform Domain VGGNet19[J]. Infrared Technology , 2022, 44(12): 1293-1300.
Citation: LI Yongping, YANG Yanchun, DANG Jianwu, WANG Yangping. Infrared and Visible Image Fusion Based on Transform Domain VGGNet19[J]. Infrared Technology , 2022, 44(12): 1293-1300.

基于变换域VGGNet19的红外与可见光图像融合

基金项目: 

长江学者和创新团队发展计划资助 IRT_16R36

国家自然科学基金 62067006

甘肃省科技计划项目 18JR3RA104

甘肃省高等学校产业支撑计划项目 2020C-19

兰州市科技计划项目 2019-4-49

甘肃省教育厅:青年博士基金项目 2022QB-067

甘肃省自然科学基金 21JR7RA300

兰州交通大学天佑创新团队 TY202003

兰州交通大学-天津大学联合创新基金项目 2021052

详细信息
    作者简介:

    李永萍(1996-),女,硕士研究生,主要研究方向:图像融合。E-mail: 2647336295@qq.com

    通讯作者:

    杨艳春(1979-),女,副教授,主要研究方向:图像融合与图像配准。E-mail: yangyanchun102@sina.com

  • 中图分类号: TP391

Infrared and Visible Image Fusion Based on Transform Domain VGGNet19

  • 摘要: 针对红外与可见光图像融合中出现细节信息丢失及边缘模糊的问题,提出一种在变换域中通过VGGNet19网络的红外与可见光图像融合方法。首先,为了使得源图像在分解过程中提取到精度更高的基础与细节信息,将源图像利用具有保边平滑功能的多尺度引导滤波器进行分解,分解为一个基础层与多个细节层;然后,采用具有保留主要能量信息特点的拉普拉斯能量对基础层进行融合得到基础融合图;其次,为了防止融合结果丢失一些细节边缘信息,采用VGGNet19网络对细节层进行特征提取,L1正则化、上采样以及最终的加权平均策略得到融合后的细节部分;最后,通过两种融合图的相加即可得最终的融合结果。实验结果表明,本文方法更好地提取了源图像中的边缘及细节信息,在主观评价以及客观评价指标中均取得了更好的效果。
    Abstract: To address the problems of loss of detailed information and blurred edges in the fusion of infrared and visible images, an infrared and visible image fusion method through the VGGNet19 network in the transform domain is proposed. Firstly, in order to extract more accurate basic and detailed data from the source images during the decomposition process, the source images are decomposed using a multi-scale guided filter with edge-preserving smoothing function into a base layer and multiple detailed layers. Then, the Laplacian energy with the characteristics of retaining the main energy information is used to fuse the basic layer to obtain the basic fusion map. Subsequently, to prevent the fusion result from losing some detailed edge information, the VGGNet19 network is used to extract the features of the detail layers, L1 regularization, upsampling and final weighted average, thus the fused detail. Finally, the final fusion is obtained by adding two fusion graphs. The experimental results show that the method proposed can better extract the edge and detailed information in the source images, and achieve better results in terms of both subjective and objective evaluation indicators.
  • 微型发光二极管(micro light emitting device,Micro-LED)作为一种自发光显示器件,具有高亮度、高集成度、长寿命和低功耗等优点,较传统液晶显示(liquid crystal display,LCD)和有机发光二极管(organic light-emitting device,OLED)显示技术,Micro-LED在显示效果、能耗以及使用寿命等方面拥有显著的优势,被认为是最具潜力的新一代显示技术[1-4]。Micro-LED微型显示器像素尺寸小于10 μm,能够实现更高的分辨率和对比度,提供更清晰、细腻的画质体验,有助于构建更为紧凑高效的显示系统,在可穿戴设备、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)、微型投影仪、3D打印、汽车抬头显示以及可见光通讯等众多领域具有广泛的应用前景[5-11]

    随着技术的持续革新和市场的逐渐成熟,Micro-LED微型显示器技术研究和产业正展现出迅猛发展的势头。美国德州理工大学Hongxing Jiang团队2012年制备10×10阵列的Micro-LED器件,并实现其显示功能[12]。香港科技大学Keimay Lau团队2012年开发了360PPI的Micro LED显示原型机,并于2014年将显示器分辨率提升至1700PPI[13]。美国德克萨斯科学技术大学Day等人研制出超高分辨率的Micro-LED阵列,该器件由640×480个像素组成,Micro-LED阵列的台面尺寸为12 μm,像素间隔为3 μm[14]。然而,尽管前景广阔,Micro-LED微型显示技术的商业化和产业化道路仍充满挑战。技术难题、生产成本、市场接受度等问题,都亟待行业内外共同努力,以期实现显著的产业化突破[15-17]。本文基于云南北方奥雷德光电科技股份有限公司自主开发的WVGA041硅基IC驱动电路,将LED微显示芯片与IC电路进行互连,制备出了高亮单色绿光Micro-LED微型显示器件,显示器像素尺寸11.1 μm×11.1 μm,像素阵列800×480,并对器件性能进行了相应表征及研究。

    像素驱动单元电路如图 1所示。LED采用电压驱动方式,视频信号Video_In在扫描信号ROWSEL和ROWSEL_B同时有效后,经P1N1向储能电容C充电,同时控制N2的输出。储能电容C可保证在一帧/场周期内维持N2的输出。N2采用源极跟随器结构,控制5 V电源(Van)施加到阳极的电压。所有像素点的阴极连接到负电压VcomVcom可通过寄存器进行调节,从而实现整个显示屏的亮度调整。N3用于对器件寄生电容实现快速放电,可在每次刷新数据前将残余电荷彻底放净,从而保证每次刷新的有效充电和显示。N3的放电设置可通过寄存器进行控制。

    图  1  像素驱动单元电路原理图
    Figure  1.  Pixel driver circuit schematic

    WVGA041系列产品的硅基板采用0.18 μm CMOS工艺制造,集成了全数字视频信号处理及804×3×484个驱动单元等电路。系统功能结构如图 2所示,其核心组成部分主要由数字视频信号接口、数字视频信号处理、测试图案发生器、数字伽马校正、灰度映射、D/A转换、行列扫描、像素驱动阵列、两线串行通信接口、3线SPI接口、可编程控制逻辑单元、温度传感器、DC/DC转换等功能模块组成。

    图  2  WVGA041系统功能框图
    Figure  2.  WVGA041 function diagram

    数字视频信号接口具有3个8位数据通道,可接受8/16/24位的RGB或YCbCr视频信号。内部解码器根据不同的视频输入格式解码输出24位RGB信号;数字视频信号处理电路接收24位RGB信号后,对视频信号的亮度、对比度分别进行调整,并保持24位RGB信号输出;伽马校正电路对24位RGB信号进行查表校正后,扩展至30位RGB信号输出;灰度映射电路通过D/A转换,将30位RGB数字信号转换为三路模拟RGB亮度电平信号,再通过行列驱动扫描电路按扫描时序依次注入到各亚像素点驱动单元储存;驱动单元电路将RGB亮度电平信号施加到LED发光二极管阳极,并维持一帧/场周期时间。DC/DC模块通过外部提供的电源和PCB背板的外围元件,产生一个负电压(Vcom)施加到全部LED像素发光二极管的公共阴极,配合前述阳极亮度电平信号,使各LED像素在一帧/场的周期时间内持续发光。

    自主研发的Micro-LED微型显示器采用倒装焊接工艺,将基于商用氮化镓LED外延制备的LED微显示芯片与公司自有白光OLED微型显示器驱动IC进行倒装焊互连。IC上的驱动像素单元按垂直列条状排列(如图 3所示),在OLED器件中,每个白光像素点由红、绿、蓝三个亚像素点构成。亚像素尺寸为2.8 μm×11.1 μm,间距0.9 μm。在LED器件中,在IC驱动像素上通过蒸镀金属将3个亚像素连接在一起,3个像素均传导相同电信号。发光像素尺寸为11.1 μm×11.1 μm,有效像素为800×480。每个像素的尺寸、发光面积与显示面积的占空比、显示区域尺寸如表 1所示。

    图  3  像素排列图
    Figure  3.  Pixel arrangement diagram
    表  1  显示器相关信息列表
    Table  1.  Related parameters of the display diode
    Pixel size Duty cycle Display area size
    Width(W)/μm Height(H)/ μm 69.50% Width(W)/mm Height(H)/mm
    11.1 11.1 8.92 5.37
    下载: 导出CSV 
    | 显示表格

    器件制备借助MEMS工艺平台,综合CMOS电路结构及工艺需求,使用2 inch绿光蓝宝石衬底GaN基LED外延制备Micro-LED显示芯片。主要工艺流程如图 4所示,首先对LED外延片进行P面金属光刻工艺,蒸镀P面金属,并将冗余金属区域通过剥离工艺,制备P型欧姆接触电极;之后进行光刻,制备像素阵列,使用ICP干法刻蚀设备定义出显示像素阵列;然后沉积二氧化硅薄膜作为显示像素侧壁钝化层,并进行钝化层光刻,使用ICP设备对P型接触电极上方的钝化膜刻蚀掉,打开欧姆接触孔;然后,进行N面金属光刻工艺,蒸镀N型欧姆接触电极,形成共阴极。

    图  4  微显示器件的结构及制作流程
    Figure  4.  Micro-LED device structure and the fabrication process

    Micro-LED显示芯片工艺完成后,使用刀轮对2 inch片切割,分立成具备完整显示功能的0.41 inch小片。之后,使用倒装焊接设备,将Micro-LED显示芯片与驱动电路键合到一起。最后,采用打线封装工艺,将倒焊好的器件与PCB电路板贴片连接。器件的亮度及光谱由PR-655光度计测量,电流和电压通过Keithley2400测试仪所组成的测试系统测量,外量子效率由远方光电PCE-2000B积分球测量。

    图 5为Micro-LED芯片像素阵列扫描电子显微镜(scanning electron microscope,SEM)图,由图可知,像素为正方形,像素尺寸为11.1 μm×11.1 μm,相邻两像素间距为0.9 μm,与实验设计一致,分辨率为800×480。

    图  5  Micro-LED微显示像素阵列SEM图
    Figure  5.  The SEM image of Micro-LED pixel array

    在实验中,由于采用的驱动IC专为OLED微型显示器设计,其输出电流较低,尽管足够点亮氮化镓基Micro-LED器件,但未能完全展现Micro-LED在大电流工作状态下所能达到的高亮度效果。为了更好地评估器件的性能,我们采用两点测试法,在CMOS驱动的N2衬底(如图 1所示)施加正向电压,Vcom端接地,通过外接电源替代驱动IC供电,模拟大电流驱动环境点亮整个显示屏,以获取该显示屏在大电流驱动下的测试数据,从而更深入地研究其光电特性。

    图 6为器件的电流-电压-亮度特性曲线。如图 6(a)所示,启亮电压仅为2.8 V,低启亮电压意味着器件具备更短的响应时间,这一特性对于需要高刷新率的应用场景尤为重要。此外,低启亮电压还有助于提升器件的稳定性和延长其使用寿命。如图(b)所示电压为4 V时,电流162 mA,器件亮度为42855 cd/m2,电压为5.0 V,电流294 mA,亮度为108000 cd/m2。电压为7.5 V,电流607 mA,亮度为251000 cd/m2。有研究显示,OLED微型显示器在3.4 V驱动电压下,器件发光亮度为10000 cd/m2左右[18]。与OLED相比,该显示屏拥有极高的亮度,这得益于其单个LED的高效能转换,使得在明亮环境中仍能保持出色的可视性。

    图  6  器件启亮电压与电流-电压-亮度特性曲线
    Figure  6.  Characteristic curves of device turn-on voltage and I-V-L

    图 7为器件色坐标随电流密度的变化曲线,可以看出,电流密度从0.3 A/cm2增加到1.3 A/cm2时,色坐标从(0.178, 0.757)变化到(0.175, 0.746),CIE-X坐标变化范围0.171~0.179,变化幅度小于0.010,CIE-Y坐标变化范围0.745~0.758,变化幅度小于0.015。随着电流密度的提高,器件的CIE-X和CIE-Y值呈现出相对稳定的变化趋势,这对于高亮显示应用十分重要。

    图  7  器件色坐标随电流密度变化曲线
    Figure  7.  The chromaticity of the green micro-LED device versus current density

    图 8展示了器件在不同电流下的电致发光(EL)光谱。其中图 8(a)为原始光谱图。可以看出,随着电流的增加,光强呈现出显著的增强趋势。图 8(b)图 8(a)的归一化光谱图,可以看出,尽管电流变化,但器件的峰值波长稳定在524 nm,且半峰宽为28 nm,呈现出较为集中的发光特性。将其峰值部分放大,其结果展示在图 8(b)的插图中,波峰的位置在电流变化的过程中几乎保持不变,这表明器件在发光过程中具有出色的稳定性,即使在电流变化的情况下,光谱也并未发生明显的偏移,体现了器件优良的光电性能和可靠的发光机制。

    图  8  器件各电流下的EL光谱特性
    Figure  8.  Characteristic of EL spectra with different current value

    图 9展示了器件的外量子效率(external quantum efficiency,EQE)随电流密度的变化曲线,EQE值随电流密度增大,先增后减。在电流密度较低时,随着电流的增加,载流子填充缺陷,SRH复合得到抑制,EQE值上升。当电流密度攀升到1.67 A/cm2左右,EQE达到最高点,之后电流增大,EQE值下降。这是因为大电流注入下,载流子泄露造成的俄歇复合加剧,影响了器件效率。此外,大电流下的热效应同样会加剧EQE下降,限制了光电转换效率的进一步提升。

    图  9  器件EQE随电流密度变化曲线
    Figure  9.  Normalized EQE as a function of current density

    通过倒装焊工艺,成功开发了绿光Micro-LED微型显示器件,实现了驱动芯片对单个LED的独立控制,并能完成视频信号输入后的画面显示(如图 10),并具备亮度、对比度、伽马校正等功能的控制和调整。

    图  10  Micro-LED微显示器件显示图片
    Figure  10.  Display image of micro-LED device

    制备了一款0.41 inch、分辨率为800×480的氮化镓基单色绿光Micro-LED微型显示器,利用高精度焊技术实现CMOS驱动电路与LED发光芯片的电气连接,实现了视频画面显示,并研究其光电特性。实验结果表明,在CMOS电路驱动范围内,器件最大亮度可达250000 cd/m2,其启亮电压2.8 V,能够满足高亮度的应用需求。电流密度从0.3 A/cm2增加到1.3 A/cm2时,色坐标从(0.178,0.757)变化到(0.175, 0.746),区间内CIE-X坐标变化范围0.171~0.179,CIE-Y坐标变化范围0.745~0.758,器件的色稳定性能够满足实际应用要求。制备的单色绿光micro-LED微型显示器具备高亮度、低启亮电压和良好色稳定性等特性,为虚拟现实(VR)、增强现实(AR)、可穿戴设备、智能眼镜、医疗影像和军事领域等提供了理想的显示解决方案,研究的成果具有显著的优势和广阔的应用前景。

  • 图  1   VGGNet19网络结构模型

    Figure  1.   VGGNet 19 Network structure model diagram

    图  2   本文算法思路框图

    Figure  2.   Block diagram of the algorithm in this paper

    图  3   实验结果:(a) 红外图像(b) 可见光图像(c) IFCNN (d) CSR (e) JSRSD (f) WLS (g) GSF (h) NSCT (i) Lp-cnn (j) 本文

    Figure  3.   Experimental results: (a) Infrared image(b) Visible image(c) IFCNN(d) CSR(e) JSRSD (f) WLS(g) GSF(h) NSCT(i)Lp-cnn(j) Ours

    图  4   融合结果三维对比分析

    Figure  4.   Three-dimensional comparative analysis chart of fusion results

    图  5   指标对比折线图:(a) FMI-dct;(b) FMI-pixel;(c) FMI-w;(d) QP;(e) QY

    Figure  5.   Indicator comparison line chart: (a) FMI-dct; (b) FMI-pixel; (c) FMI-w; (d) QP; (e) QY

  • [1]

    MA Jiayi, MA Yong, LI Chang. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004

    [2] 叶坤涛, 李文, 舒蕾蕾, 等. 结合改进显著性检测与NSST的红外与可见光图像融合方法[J]. 红外技术, 2021, 43(12): 1212-1221. http://hwjs.nvir.cn/article/id/bfd9f932-e0bd-4669-b698-b02d42e31805

    YE Kuntao, LI Wen, SHU Leilei, et al. Infrared and visible image fusion method based on improved saliency detection and non-subsampled Shearlet transform[J]. Infrared Technology, 2021, 43(12): 1212-1221. http://hwjs.nvir.cn/article/id/bfd9f932-e0bd-4669-b698-b02d42e31805

    [3]

    LI Shutao, KANG Xudong, FANG Leyuan, et al. Pixel-level image fusion: a survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112. DOI: 10.1016/j.inffus.2016.05.004

    [4]

    MA Cong, MIAO Zhenjiang, ZHANG Xiaoping, et al. A saliency prior context model for real-time object tracking[J]. IEEE Transactions on Multimedia, 2017, 19(11): 24152424.

    [5]

    HU Wenrui, YANG Yehui, ZHANG Wensheng, et al. Moving object detection using Tensor based low-rank and saliently fused-sparse decomposition[J]. IEEE Transactions on Image Processing, 2017, 26(2): 724-737. DOI: 10.1109/TIP.2016.2627803

    [6] 杨九章, 刘炜剑, 程阳. 基于对比度金字塔与双边滤波的非对称红外与可见光图像融合[J]. 红外技术, 2021, 43(9): 840-844. http://hwjs.nvir.cn/article/id/1c7de46d-f30d-48dc-8841-9e8bf3c91107

    YANG Jiuzhang, LIU Weijian, CHENG Yang. Asymmetric infrared and visible image fusion based on contrast pyramid and bilateral filtering[J]. Infrared Technology, 2021, 43(9): 840-844. http://hwjs.nvir.cn/article/id/1c7de46d-f30d-48dc-8841-9e8bf3c91107

    [7] 罗迪, 王从庆, 周勇军. 一种基于生成对抗网络与注意力机制的可见光和红外图像融合方法[J]. 红外技术, 2021, 43(6): 566-574. http://hwjs.nvir.cn/article/id/3403109e-d8d7-45ed-904f-eb4bc246275a

    LUO Di, WANG Congqing, ZHOU Yongjun. A visible and infrared image fusion method based on generative adversarial networks and attention mechanism[J]. Infrared Technology, 2021, 43(6): 566-574. http://hwjs.nvir.cn/article/id/3403109e-d8d7-45ed-904f-eb4bc246275a

    [8]

    AZARANG A, HAFEZ E, MANOOCHEHRI, et al. Convolutional autoencoder-based multispectral image fusion[J]. IEEE Access, 2019, 7: 35673-35683. DOI: 10.1109/ACCESS.2019.2905511

    [9]

    HOU Ruichao, ZHOU Dongming, NIE Rencan, et al. VIF-net: an unsupervised framework for infrared and visible image fusion[J]. IEEE Transactions on Computational Imaging, 2020(6): 640-6521.

    [10]

    LIU Yu, CHEN Xun, HU Peng, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36: 191-207. DOI: 10.1016/j.inffus.2016.12.001

    [11]

    MA Jiayi, YU Wei, LIANG Pengwei, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. DOI: 10.1016/j.inffus.2018.09.004

    [12] 唐丽丽, 刘刚, 肖刚. 基于双路级联对抗机制的红外与可见光图像融合方法[J]. 光子学报, 2021, 50(9): 0910004. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202109035.htm

    TANG Lili, LIU Gang, XIAO Gang. Infrared and visible image fusion method based on dual-path cascade adversarial mechanism[J]. Acta Photonica Sinica, 2021, 50(9): 0910004. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202109035.htm

    [13]

    ZHANG Yu, LIU Yu, SUN Peng, IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99-118. DOI: 10.1016/j.inffus.2019.07.011

    [14] 郝永平, 曹昭睿, 白帆, 等. 基于兴趣区域掩码卷积神经网络的红外-可见光图像融合与目标识别算法研究[J]. 光子学报, 2021, 50(2): 0210002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202102010.htm

    HAO Yongping, CAO Zhaorui, BAI Fan, et al. Research on infrared visible image fusion and target recognition algorithm based on region of interest mask convolution neural network[J]. Acta Photonica Sinica, 2021, 50(2): 0210002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202102010.htm

    [15] 刘佳, 李登峰. 马氏距离与引导滤波加权的红外与可见光图像融合[J]. 红外技术, 2021, 43(2): 162-169. http://hwjs.nvir.cn/article/id/56484763-c7b0-4273-a087-8d672e8aba9a

    LIU Jia, LI Dengfeng. Infrared and visible light image fusion based on Mahalanobis distance and guided filter weighting[J]. Infrared Technology, 2021, 43(2): 162-169. http://hwjs.nvir.cn/article/id/56484763-c7b0-4273-a087-8d672e8aba9a

    [16]

    LI Hui, WU Xiaojun, KITTLER J. Infrared and visible image fusion using a deep learning framework[C]// 24th International Conference on Pattern Recognition of IEEE, 2018: 8546006-1.

    [17]

    LIU Yu, CHEN Xun, WARD R K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters, 2016, 23(12): 1882-1886. https://ieeexplore.ieee.org/document/7593316/

    [18]

    LIU C H, QI Y, DING W R. Infrared and visible image fusion method based on saliency detection in sparse domain[J]. Infrared Physics & Technology, 2017, 83: 94-102. https://www.sciencedirect.com/science/article/pii/S1350449516307150

    [19]

    MA Jinlei, ZHOU Zhiqian, WANG Bo, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-17. https://www.sciencedirect.com/science/article/pii/S1350449516305928

    [20]

    MA Jiayi, ZHOU Yi. Infrared and visible image fusion via gradientlet filter[J]. Computer Vision and Image Understanding, 2020(197-198): 103016.

    [21]

    QU Xiaobo, YAN Jingwen, XIAO Hongzhi, et al. Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain[J]. Acta Automatica Sinica, 2008, 34(12): 1508-1514. https://www.sciencedirect.com/science/article/pii/S1874102908601743

    [22]

    LIU Yu, CHEN Xun, CHENG Juan, et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2018, 16(3): 1850018. DOI: 10.1142/S0219691318500182

    [23]

    HAGHIGHAT M, RAZIAN M A. Fast-FMI: non-reference image fusion metric[C]//International Conference on Application of Information and Communication Technologies(AICT), 2014: 1-3.

图(5)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  54
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-14
  • 修回日期:  2022-02-27
  • 刊出日期:  2022-12-19

目录

/

返回文章
返回