Abstract:
To address the problems of loss of detailed information and blurred edges in the fusion of infrared and visible images, an infrared and visible image fusion method through the VGGNet19 network in the transform domain is proposed. Firstly, in order to extract more accurate basic and detailed data from the source images during the decomposition process, the source images are decomposed using a multi-scale guided filter with edge-preserving smoothing function into a base layer and multiple detailed layers. Then, the Laplacian energy with the characteristics of retaining the main energy information is used to fuse the basic layer to obtain the basic fusion map. Subsequently, to prevent the fusion result from losing some detailed edge information, the VGGNet19 network is used to extract the features of the detail layers, L1 regularization, upsampling and final weighted average, thus the fused detail. Finally, the final fusion is obtained by adding two fusion graphs. The experimental results show that the method proposed can better extract the edge and detailed information in the source images, and achieve better results in terms of both subjective and objective evaluation indicators.