留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化物基紫外探测器的研究进展

贾梦涵 唐利斌 左文彬 王方 姬荣斌 项金钟

贾梦涵, 唐利斌, 左文彬, 王方, 姬荣斌, 项金钟. 氧化物基紫外探测器的研究进展[J]. 红外技术, 2020, 42(12): 1121-1133.
引用本文: 贾梦涵, 唐利斌, 左文彬, 王方, 姬荣斌, 项金钟. 氧化物基紫外探测器的研究进展[J]. 红外技术, 2020, 42(12): 1121-1133.
JIA Menghan, TANG Libin, ZUO Wenbin, WANG Fang, JI Rongbin, XIANG Jinzhong. Progress in Oxide-based Ultraviolet Detectors[J]. INFRARED TECHNOLOGY, 2020, 42(12): 1121-1133.
Citation: JIA Menghan, TANG Libin, ZUO Wenbin, WANG Fang, JI Rongbin, XIANG Jinzhong. Progress in Oxide-based Ultraviolet Detectors[J]. INFRARED TECHNOLOGY, 2020, 42(12): 1121-1133.

氧化物基紫外探测器的研究进展

基金项目: 

国家重点研发计划 2019YFB2203404

云南省创新团队项目 2018HC020

自然科学基金项目 11864044

详细信息
    作者简介:

    贾梦涵(1993-),女,博士研究生,研究方向是光电材料

    通讯作者:

    唐利斌(1978-),男,研究员级高级工程师,博士生导师,主要从事光电材料与器件的研究。E-mail: scitang@163.com

    项金钟(1963-),男,教授,主要从事低维物理、纳米结构材料及光电应用研究。E-mail: jzhxiang@ynu.edu.cn

  • 中图分类号: TN204

Progress in Oxide-based Ultraviolet Detectors

  • 摘要: 随着紫外探测技术的不断发展,氧化物材料在紫外探测领域表现出传统探测器所不具备的优点而成为近年研究的热点,是继红外探测技术之后又一快速发展的军民两用探测技术。然而,氧化物基紫外光电探测器的广泛应用,仍然面临一些问题。本文对国内外紫外探测技术的应用和发展历史进行了概述,并对3种金属氧化物紫外探测材料的晶体结构、性质及其器件研究进展进行了概括和讨论。最后,针对氧化物基紫外探测材料及器件在研究中所面临的问题,进行了分析,并对氧化物基紫外探测技术的发展进行了总结与展望。
  • 图  1  紫外探测技术的应用案例

    Figure  1.  Application cases of the ultraviolet detecting technique

    图  2  氧化物基紫外探测技术的发展进程

    Figure  2.  Development history of oxide-based ultraviolet detection technology

    图  3  不同形貌的ZnO纳米结构:(a) ZnO纳米颗粒的透射电子显微镜(transmission electron microscope, TEM)图[28];(b) ZnO纳米线的场发射扫描电子显微镜(field emission scanning electron microscope, FE-SEM)图,插图为局部放大图[29];(c)单个ZnO纳米棒横截面的SEM图[30];(d) ZnO纳米管的SEM图,插图为高分辨SEM图[31];(e) ZnO纳米带的SEM图,插图是ZnO纳米带的TEM图[32];(f) ZnO纳米锯的SEM图,插图为放大的SEM图[33];(g) ZnO纳米螺旋的SEM图和TEM图[34];(h) ZnO纳米环的TEM图,插图是椭圆选区放大图[35]

    Figure  3.  ZnO nanostructures with different morphologies: (a) TEM image of ZnO nanoparticles[28]; (b) FE-SEM image of ZnO nanowires and the inset is a partial enlarged detail[29]; (c) SEM image of cross section of single ZnO nanorod[30]; (d) SEM image of ZnO nanotubes and the inset is a HR-SEM image[31]; (e) SEM image of ZnO nanobelts and the inset is a TEM image of a ZnO nanobelt[32]; (f) SEM image of ZnO nanosaws and the inset shows magnified SEM image[33]; (g) SEM and TEM images of ZnO nanohelix[34]; (h) TEM image of ZnO nanorings and the inset is a magnified image from the elliptical selection[35]

    图  4  ZnO的结构图:(a) ZnO晶体结构;(b) ZnO晶体显微图;(c)和(d)在不同沉积时间下2D有序ZnO多孔薄膜的SEM图[38];(e)单壁ZnO纳米管的展开蜂巢晶格,插图是单层ZnO[39];(f) ZnO三维空间结构;(g)和(h) 3D阵列ZnO纳米棒的SEM图[40]

    Figure  4.  Structure diagrams of ZnO: (a) Crystal structure of ZnO; (b) Micrograph of ZnO crystal; (c)and(d) SEM images of the 2D ordered ZnO porous films with different deposition times: (c) 40 min and (d) 2 h[38]; (e) Unrolled honeycomb lattice of a single-walled ZnO NTs and the inset is single layer ZnO[39]; (f) 3D structure of ZnO; (g) and (h) SEM images of 3D array ZnO NRs[40]

    图  5  β-Ga2O3的结构与性质:(a) β-Ga2O3晶体结构示意图[49];(b)和(c) (100)β-Ga2O3和[010]β-Ga2O3的原子排列模型[50];(d) 5种不同结构Ga2O3之间的转化关系及条件;(e) β-Ga2O3的TEM图和STEM HAADF图[50-51];(f)在黑暗和紫外光照射下基于β-Ga2O3的MSM光电探测器的能带示意图[52];(g) MBE生长的β-Ga2O3薄膜的XRD图谱和XRR图谱与拟合曲线(红色所示)[52]

    Figure  5.  Structure and properties of β-Ga2O3: (a) Schematic diagram of β-Ga2O3 crystal structure[49]; (b) and (c) Atomic arrangement models of (100)β-Ga2O3 and [010]β-Ga2O3[50]; (d) Conversion relationships and conditions among five different structures of Ga2O3; (e) SEM and STEM HAADF images of β-Ga2O3[50-51]; (f) Energy band diagrams of MSM photodetector based on β-Ga2O3 under dark and UV illumination[52]; (g) XRD pattern and XRR pattern with fitting curve(shown in red)of β-Ga2O3film grown by MBE[52]

    图  6  TiO2的结构与性质:(a)锐钛矿TiO2和金红石TiO2的晶胞;(b)离轴磁控溅射示意图;(c)和(f)厚度为500nm的TiO2 TEM图和电子衍射图;(d)和(e)不同位置处沉积的TiO2薄膜的XRD图谱

    Figure  6.  Structure and properties of TiO2: (a) Unit cells of anatase TiO2 and rutile TiO2; (b) Schematic of off-axis magnetron sputtering; (c) and(f) TEM images and electron diffraction pattern of TiO2 films with a thickness of 500 nm; (d)and(e) XRD patterns of TiO2 films deposited at different positions

    图  7  TiO2基MSM紫外探测器:(a),(b)和(c)金红石TiO2基MSM紫外光电探测器的器件结构及其叉指电极的光学显微图像和TiO2薄膜的TEM图[64];(d),(e),(f),(g)和(h)锐钛矿TiO2基MSM探测器的器件结构、TiO2 薄膜的AFM图像和SEM显微图像、I-V特性以及其能带示意图[65]

    Figure  7.  TiO2-based MSM ultraviolet detectors: (a), (b) and (c) Device structure of rutile-TiO2-based MSM ultraviolet photodetector, optical microscopic image of its inter digital electrodes, and TEM image of the TiO2 film[64]; (d), (e), (f), (g) and (h) Device structure of the anatase-TiO2-based MSM detector, AFM image and SEM micrograph of the TiO2 film, I-V characteristics curves, and energy band diagram of the detector[65]

    表  1  金属氧化物紫外探测材料及器件性能

    Table  1.   Metal oxide ultraviolet detection materials and device performance

    Materials Devices
    Preparation method Form Wavelength range/nm Structure Max responsivity/
    (AW-1)
    EQE/
    (%)
    Dark current or
    Il/Id radio
    Ref.
    ZnO RF magnetron sputtering Thin films 200-380 MSM 3.37×10-1 - 1 nA [11]
    Ga2O3 RF magnetron sputtering Thin films 254-365 MSM 8.926×10-1 444 1×10-11A [12]
    TiO2 Hydrothermal Nano-wires 290-400 Photocon-duction 1.021×103 3800 1.67×104 A [13]
    SnO2 High temperature carbon thermal
    reduction
    Nano-wires 200-400 MSM 104 300000 102 [14]
    In2O3 Electron beam evaporation Nano-rods 290-390 Schottky 1.5×101 - - [15]
    Sm2O3 RF magnetron sputtering Thin films 254-365 Hetero-structure - - 172 [16]
    CdO Chemical spray pyrolysis technique Nano-films 200-386 Photocon-duction - - 68 mA [17]
    下载: 导出CSV
  • [1] Lucas R M, Yazar S, Young A R, et al. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate[J]. Photochemical & Photobiological Sciences, 2019, 18(3): 641-680. http://pubs.rsc.org/en/content/articlepdf/2019/pp/c8pp90060d
    [2] ZHOU C, AI Q, CHEN X, et al. Ultraviolet photodetectors based on wide bandgap oxide semiconductor films[J]. Chinese Physics B, 2019, 28(4): 48503-048503. doi:  10.1088/1674-1056/28/4/048503
    [3] Siegel A M, Shaw G A, Model J. Short-range communication with ultraviolet LEDs[J]. Proceedings of SPIE, The International Society for Optical Engineering, 2004, 5530: 182-193. http://spie.org/x648.xml?product_id=582112
    [4] XIA Y, LIU X Z. Study on the new structure of the solar blind ultraviolet detector[J]. IEEM, 2016, 1: 489-496. doi:  10.2991/978-94-6239-180-2_47
    [5] 单海滨, 石艳军, 陈翔, 等.利用FY3地球辐射收支及臭氧探测资料监测紫外辐射[C]//中国气象学会年会s21新一代气象卫星技术发展及其应用, 2016: 49.

    SHAN Haibin, SHI Yangjun, CHEN Xiang, et al. Utilizing FY3 earth radiation budget and ozone detection data to monitor ultraviolet radiation[C]//Annual Development of China Meteorological Society s21 New Generation Meteorological Satellite Technology and Its Application, 2016: 49.
    [6] Razeghi M, Rogalski A. Semiconductor ultraviolet detectors[J]. Journal of Applied Physics, 1996, 79(10): 7433-7473. doi:  10.1063/1.362677
    [7] Butun S, Gokkavas M, YU H B, et al. Dark current reduction in ultraviolet metal-semiconductor-metal photodetectors based on wide band-gap semiconductors[J]. IEEE Leos Ann Mtg, 2009: 236-237. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5343292
    [8] CHEN H, LIU K, HU L, et al. New concept ultraviolet photodetectors[J]. Materials Today, 2015, 18(9): 493-502. doi:  10.1016/j.mattod.2015.06.001
    [9] Kim M, Seo J H, Singisetti U, et al. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond[J]. Journal of Materials Chemistry C, 2017, 5(33): 8338-8354. doi:  10.1039/C7TC02221B
    [10] ZOU Yanan, ZHANG Yue, HU Yongming, et al. Ultraviolet detectors based on wide bandgap semiconductor nanowire: a review[J]. Sensors, 2018, 18(7): 2072. doi:  10.3390/s18072072
    [11] JIANG D, ZHANG J, LU Y, et al. Ultraviolet Schottky detector based on epitaxial ZnO thin film[J]. Solid State Electronics, 2008, 52(5): 679-682. doi:  10.1016/j.sse.2007.10.040
    [12] PENG Y, ZHANG Y, CHEN Z, et al. Arrays of solar-blind ultraviolet photodetector based on beta-Ga2O3 epitaxial thin films[J]. IEEE Photonics Technology Letters, 2018, 30(11): 993-996. doi:  10.1109/LPT.2018.2826560
    [13] ZHANG D, LIU C, YIN B, et al. Organics filled one-dimensional TiO2 nanowires array ultraviolet detector with enhanced photo-conductivity and dark-resistivity[J]. Nanoscale, 2017, 9(26): 9095-9103. doi:  10.1039/C7NR03408C
    [14] SHI H, CHENG B, CAI Q, et al. Surface state controlled ultrahigh selectivity and sensitivity for UV photodetectors based on individual SnO2 nanowires[J]. Journal of Materials Chemistry C, 2016, 4(36): 8399-8406. doi:  10.1039/C6TC02420C
    [15] Goswami T, Mondal A, Singh P, et al. In2-xO3-y, 1D perpendicular nanostructure arrays as ultraviolet detector[J]. Solid State Sciences, 2015, 48: 56-60. doi:  10.1016/j.solidstatesciences.2015.07.001
    [16] 潘傲秋. Sm2O3薄膜异质结的性能及其在紫外光电探测方面的应用研究[D].杭州: 浙江理工大学, 2016.

    PAN Aoqiu. Study on the properties of Sm2O3 thin film heterojunction and its application in ultraviolet photoelectric detection[D]. Hangzhou: Zhejiang Sci-Tech University, 2016.
    [17] Asama N N, Lamia K A, Ghaida S, et al. Current-voltage characteristics of CdO nanostructure ultraviolet photoconductive detector[J]. International Journal of Science, Environment and Technology, 2014, 3(2): 684-691. https://www.researchgate.net/publication/271910658_CURRENT_-VOLTAGE_CHARACTERISTICS_OF_CdO_NANOSTRUCTURE_ULTRAVIOLET_PHOTOCONDUCTIVE_DETECTOR
    [18] Baum W A, Johnson F S, Oberly J J, et al. Solar ultraviolet spectrum to 88 kilometers[J]. Physical Review, 1946, 70(9-10): 781-782. doi:  10.1103/PhysRev.70.781
    [19] ZU P, TANG Z K, WONG G K L, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature[J]. Solid State Communications, 1997, 103(8): 459-463. doi:  10.1016/S0038-1098(97)00216-0
    [20] Service R F. Will UV lasers beat the blues[J]. Science, 1997, 276(5314): 895-895. doi:  10.1126/science.276.5314.895
    [21] Shim M G, Sionnest P. n-type colloidal semiconductor nanocrystals[J]. Nature, 2000, 407(6807): 981-983. doi:  10.1038/35039577
    [22] Dittrich T, Zinchuk V, Skryshevskyy V, et al. Electrical transport in passivated Pt/TiO2/Ti Schottky diodes[J]. Journal of Applied Physics, 2005, 98(10): 1522. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4948239
    [23] XUE H, KONG X, LIU Z, et al. TiO2 based metal-semiconductor-metal ultraviolet photodetectors[J]. Applied Physics Letters, 2007, 90(20): 223505. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4826885
    [24] Oshima T, Okuno T, Arai N, et al. Flame detection by a β-Ga2O3-based sensor[J]. Japanese Journal of Applied Physics, 2009, 48(1): 011605. doi:  10.1143/JJAP.48.011605
    [25] Tzeng S K, Hon M H, Leu I C, et al. Improving the performance of a Zinc oxide nanowire ultraviolet photodetector by adding silver nanoparticles[J]. Journal of The Electrochemical Society, 2012, 159(4): H440-H443. doi:  10.1149/2.088204jes
    [26] WEI T C, Tsai D S, Ravadgar P, et al. See-through, solar-blind photodetectors for use in Harsh environments[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 112-117. doi:  10.1109/JSTQE.2014.2321517
    [27] CHOU H S, YANG K D, XIAO S H, et al. Temperature-dependent ultraviolet photoluminescence in hierarchical Zn, ZnO and ZnO/Zn nanostructures[J]. Nanoscale, 2019, 11(28): 13385-13396. doi:  10.1039/C9NR05235F
    [28] Zak A K, Razali R, Majid W A, et al. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles[J]. International Journal of Nanomedicine, 2011, 6(1): 1399-1403. http://www.ncbi.nlm.nih.gov/pubmed/21796242
    [29] Hsu C L, Chen K C, Hsueh T J. UV photodetector of a homojunction based on p-type Sb-doped ZnO nanoparticles and n-type ZnO nanowires[J]. IEEE Transactions on Electron Devices, 2014, 61(5): 1347-1353. doi:  10.1109/TED.2014.2312253
    [30] Alaie Z, Nejad S M, Yousefi M H. Array of ZnO nanoparticle-sensitized ZnO nanorods for UV photodetection[J]. Journal of Materials Science Materials in Electronics, 2014, 25(2): 852-856. doi:  10.1007/s10854-013-1656-6
    [31] YANG K, XU C, HUANG L, et al. Synthesis and reactivity in inorganic, metal-organic, and nano-metal chemistry[J]. Taylor & Francis, 2013, 43(3): 1501-1505. doi:  10.1081/SIM-200047489
    [32] HE J H, LIN Y H, Mcconney M E, et al. Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functiona- lization[J]. Journal of Applied Physics, 2007, 102(8): 354. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4945454
    [33] WU C Y, Hsu H C, CHENG H M, et al. Structural and optical properties of ZnO nanosaws[J]. Journal of Crystal Growth, 2006, 287(1): 189-193. doi:  10.1016/j.jcrysgro.2005.10.065
    [34] GAO P X, DING Y, WANG Z L. Electronic transport in superlattice -structured ZnO nanohelix[J]. Nano Letters, 2009, 9(1): 137-143. doi:  10.1021/nl802682c
    [35] DING Y, KONG X Y, WANG Z L. Doping and planar defects in the formation of single-crystal ZnO nanorings[J]. Physical Review B, 2004, 70(23): 155-163. http://adsabs.harvard.edu/abs/2004PhRvB..70w5408D
    [36] YAO J Q, DENG H, LI M, et al. Improving processes on ZnO-based ultraviolet photodetector[J]. Advanced Materials Research, 2013, 685: 195-200. doi:  10.4028/www.scientific.net/AMR.685.195
    [37] Desgreniers S. High-density phases of ZnO: structural and compressive parameters[J]. Physical Review B, 1998, 58(21): 14102-14105. doi:  10.1103/PhysRevB.58.14102
    [38] YAN H, YANG Y, FU Z, et al. Fabrication of 2D and 3D ordered porous ZnO films using 3D opal templates by electrode position[J]. Electrochemistry Communications, 2005, 7(11): 1117-1121. doi:  10.1016/j.elecom.2005.08.011
    [39] TU Z C, HU X. Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes[J]. Physical Review B, 2006, 74(3): 035434. doi:  10.1103/PhysRevB.74.035434
    [40] Giakoumaki A N, Kenanakis G, Klini A, et al. 3D micro-structured arrays of ZnΟ nanorods[J]. Scientific Reports, 2017, 7(1): 2100. doi:  10.1038/s41598-017-02231-z
    [41] LIU Y, Gorla C R, LIANG S, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD[J]. Journal of Electronic Materials, 2000, 29(1): 69-74. doi:  10.1007/s11664-000-0097-1
    [42] Fabricius H, Skettrup T, Bisggard P. Ultraviolet detectors in thin sputtered ZnO films[J]. Applied Optics, 1986, 28: 2764. http://www.ncbi.nlm.nih.gov/pubmed/18231558
    [43] 王培利, 李燕. ZnO紫外探测器的研究[D].成都: 电子科技大学, 2008.

    WANG Peili, LI Yan. Research on ZnO Ultraviolet Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2008.
    [44] Jeong I S, Kim J H, Im S. Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure[J]. Applied Physics Letters, 2003, 83(14): 2946-2948. doi:  10.1063/1.1616663
    [45] Moon T H, Jeong M C, Lee W, et al. The fabrication and characterization of ZnO UV detector[J]. Applied Surface Science, 2005, 240(1-4): 280-285. doi:  10.1016/j.apsusc.2004.06.149
    [46] ZHANG J, SHI J, QI D C, et al. Recent progress on the electronic structure, defect, and doping properties of Ga2O3[J]. APL Materials, 2020, 8(2): 020906. doi:  10.1063/1.5142999
    [47] Razeghi M. Short-wavelength solar-blind detectors-status, prospects, and markets[J]. Proceedings of the IEEE, 2002, 90(6): 1006-1014. doi:  10.1109/JPROC.2002.1021565
    [48] CHEN X, REN F, GU S, et al. Review of gallium-oxide-based solar -blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381-415. doi:  10.1364/PRJ.7.000381
    [49] ZHANG L, YAN J, ZHANG Y, et al. A comparison of electronic structure and optical properties between N-doped β-Ga2O3 and N-ZnCo -doped β-Ga2O3[J]. Physica B., 2012, 407(8): 1227-1231. doi:  10.1016/j.physb.2012.01.107
    [50] Nakagomi S, Kubo S, Kokubun Y. The orientational relationship between monoclinic β-Ga2O3, and cubic NiO[J]. Journal of Crystal Growth, 2016, 445: 73-77. doi:  10.1016/j.jcrysgro.2016.04.023
    [51] Robert S, Guenter W, Michele B, et al. Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001)[J]. Applied Physics Express, 2015, 8(1):11101. doi:  10.7567/APEX.8.011101
    [52] Pratiyush A S, Krishnamoorthy S, Solanke S V, et al. High responsivity in molecular beam epitaxy (MBE) grown beta-Ga2O3 metal semiconductor metal (MSM) solar blind deep-UV photodetector[J]. Applied Physics Letters, 2017, 110(22): 041910. http://smartsearch.nstl.gov.cn/paper_detail.html?id=93ebbb8da3c5a554792d9840b898a4b9
    [53] Oshima T, Okuno T, Fujita S. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors[J]. Japanese Journal of Applied Physics, 2007, 46(11): 7217-7220. doi:  10.1143/JJAP.46.7217
    [54] Suzuki R, Nakagomi S, Kokubun Y, et al. Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with an Au Schottky contact fabricated on single crystal substrates by annealing[J]. Applied Physics Letters, 2009, 94: 222102. doi:  10.1063/1.3147197
    [55] 冯喜宁.氧化物纳米结构在紫外探测器件上的应用研究[D].重庆: 西南大学, 2014.

    FENG Xining. Research on the Application of Oxide Nanostructures in UV Detectors[D]. Chongqing: Southwest University, 2014.
    [56] 盛拓.氧化镓薄膜光电导日盲紫外探测器的研制[D].成都: 电子科技大学, 2015.

    SHENG Tuo. Development of Gallium oxide thin film photoconductive solar blind ultraviolet detector[D]. Chengdu: University of Electronic Science and Technology of China, 2012.
    [57] 刘浩, 邓宏, 韦敏, 等.氧化镓薄膜的制备及其日盲紫外探测性能研究[J]. 发光学报, 2015, 36(8): 907-910. http://www.cnki.com.cn/Article/CJFDTotal-FGXB201508011.htm

    LIU Hao, DENG Hong, WEI Min, et al. Preparation of gallium oxide thin film and its solar blind ultraviolet detection performance[J]. Chinese Journal of Luminescence, 2015, 36(8): 907-910. http://www.cnki.com.cn/Article/CJFDTotal-FGXB201508011.htm
    [58] JIA M, WANG F, TANG L, et al. High-performance deep ultraviolet photodetector based on NiO/β-Ga2O3 heterojunction[J]. Nanoscale Research Letters, 2020, 15(1): 47. doi:  10.1186/s11671-020-3271-9
    [59] ZHENG L, DENG X, WANG Y, et al. Self‐powered flexible TiO2 fibrous photodetectors: heterojunction with P3HT and boosted responsivity and selectivity by Au nanoparticles[J]. Advanced Functional Materials, 2020, 30(24): 2001604. doi:  10.1002/adfm.202001604
    [60] JI L W, Water W, Hsiao Y J, et al. TiO2-based ultraviolet photo- detectors[J]. Integrated Ferroelectrics, 2013, 143(1): 65-70. doi:  10.1080/10584587.2013.795848
    [61] Goldberg Y. Semiconductor near-ultraviolet photoelectronics[J]. Semiconductor Technology, 1999, 14(7): R41. doi:  10.1088/0268-1242/14/7/201
    [62] WANG Y Q, WU B C, LIU Z G, et al. The first-principle study oleic acid/hydrazine exciting the growth of TiO2 (100) crystal face[J]. ICE Science, 2018, 6(4): 31-36. doi:  10.1680/jsuin.17.00043
    [63] JIA J, Yamamoto H, Okajima T, et al. On the crystal structural control of sputtered TiO2 thin films[J]. Nanoscale Research Letters, 2016, 11(1): 1-9. doi:  10.1186/s11671-015-1209-4
    [64] LIU H Y, LIN W H, SUN W C, et al. A study of ultrasonic spray pyrolysis deposited rutile-TiO2-based metal-semiconductor-metal ultraviolet photodetector[J]. Materials Science in Semiconductor Processing, 2017, 57: 90-94. doi:  10.1016/j.mssp.2016.10.005
    [65] HUANG H, XIE Y, ZHANG Z, et al. Growth and fabrication of sputtered TiO2 based ultraviolet detectors[J]. Applied Surface Science, 2014, 293(8): 248-254. http://www.sciencedirect.com/science/article/pii/S0169433213024318
    [66] Munoz E, Monroy E, Garrido J A, et al. Photoconductor gain mechanisms in GaN ultraviolet detectors[J]. Applied Physics Letters, 1997, 71(7): 870-872. doi:  10.1063/1.119673
    [67] Garrido J A, Monroy E, Izpura I, et al. Photoconductive gain modelling of GaN photodetectors[J]. Semiconductor Science Technology, 1998, 13(6): 563. doi:  10.1088/0268-1242/13/6/005
    [68] Katz O, Bahir G, Salzman J. Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors[J]. Applied Physics Letters, 2004, 84(20): 4092-4094. doi:  10.1063/1.1753056
    [69] Seo S W, Lee K K, Kang S, et al. GaN, metal-semiconductor-metal photodetectors grown on lithium gallate substrates by molecular-beam epitaxy[J]. Applied Physics Letters, 2001, 79(9): 1372-1374. doi:  10.1063/1.1398320
    [70] ZHANG L, YAO N, ZHANG B, et al. TiO2 thin film UV detectors deposited by DC reactive magnetron sputtering[J]. Semiconductor Photonics and Technology, 2004, 10(4): 245-247. http://d.wanfangdata.com.cn/Periodical_bdtgzxyjs-e200404006.aspx
    [71] 王怡, 江伟, 邢光建, 等. TiO2薄膜紫外探测器的光电特性[C]//第七届中国纳米科技西安研讨会论文集, 2008: 165-170.

    WANG Yi, JIANG Wei, XING Guangjian, et al. Optoelectronic characteristics of TiO2 thin film ultraviolet detector [C]//Proceedings of the 7th China Nanotechnology Xi'an Conference, 2008: 165-170.
    [72] Ulrich D R. Prospects for sol-gel processes[J]. Journal of Non- Crystalline Solids, 1990, 121(1-3): 465-479. doi:  10.1016/0022-3093(90)90177-N
    [73] 张永彬, 赵景畅. TiO2薄膜的制备及光催化性能研究[J]. 功能材料, 2001, 32(3): 310-311. doi:  10.3321/j.issn:1001-9731.2001.03.034

    ZHANG Yongbin, ZHAO Jingchang. Study on preparation and photo- catalytic performance of TiO2 thin films[J]. Functional Materials, 2001, 32(3): 310-311. doi:  10.3321/j.issn:1001-9731.2001.03.034
    [74] 陈士夫, 程雪丽.空心玻璃微球负载清除水面的油层[J]. 中国环境科学, 1999, 19(1): 47-50. doi:  10.3321/j.issn:1000-6923.1999.01.012

    CHEN Shifu, CHENG Xueli. Hollow glass microspheres for removing oil layer from water surface[J]. China Environmental Science, 1999, 19(1): 47-50. doi:  10.3321/j.issn:1000-6923.1999.01.012
    [75] 贾桂玲, 谢晓峰, 孙召梅, 等.低温制备光活性纳米晶二氧化钛薄膜[J]. 上海大学学报, 2005, 11(3): 311-313. doi:  10.3969/j.issn.1007-2861.2005.03.020

    JIA Guiling, XIE Xiaofeng, SUN Zhaomei, et al. Preparation of photoactive nanocrystalline titanium dioxide films at low temperature[J]. Journal of Shanghai University, 2005, 11(3): 311-313. doi:  10.3969/j.issn.1007-2861.2005.03.020
    [76] Tsai T Y, CHANG S J, WENG W Y, et al. A visible-blind TiO2 nanowire photodetector[J]. Journal of the Electrochemical Society, 2012, 159(4): J132. doi:  10.1149/2.008205jes
    [77] Natarajian C, Nogami G. Cathodic electrodeposition of nanocrystalline titanium dioxide thin films[J]. Journal of the Electrochemical Society, 1996, 143(5): 1547-1550. doi:  10.1149/1.1836677
    [78] 崔晓莉, 江志裕.纳米二氧化钛薄膜的制备及性能研究[J]. 电镀与涂饰, 2002, 21(5): 17-21. doi:  10.3969/j.issn.1004-227X.2002.05.005

    CUI Xiaoli, JIANG Zhiyu. Study on preparation and properties of nano -titanium dioxide films[J]. Plating & Finishing, 2002, 21(5): 17-21. doi:  10.3969/j.issn.1004-227X.2002.05.005
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1365
  • HTML全文浏览量:  47
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-27
  • 修回日期:  2020-12-10
  • 刊出日期:  2020-12-26

目录

    /

    返回文章
    返回