基于RAU-net的视网膜血管图像分割

Retinal Vessel Image Segmentation Based on RAU-net

  • 摘要: 在眼科疾病的诊断中,对视网膜血管进行分割是非常有效的一种方法。在方法使用中,经常会遇到由于视网膜血管背景对比度低及血管末梢细节复杂导致的血管分割难度较大的问题,通过在设计网络的过程中在基础U-net网络中引入残差学习,注意力机制等模块,并将两者巧妙地结合在一起,提出一种新型的基于U-net的RAU-net视网膜血管图像分割算法。首先,在网络的编码器阶段加入残差模块,解决了模型网络加深导致梯度爆炸以及梯度消失的问题。其次,在网络的解码器阶段引入注意力门(attention gate, AU)模块,用来抑制不必要的特征,从而使模型产生更高的精度。通过在DRIVE数据集上进行验证,该算法的准确率、灵敏度、特异性和F1-score分别达到了0.7832,0.9815,0.9568和0.8192。分割效果相对于普通监督学习算法较为良好。

     

    Abstract: In the diagnosis of ophthalmic diseases, segmentation of retinal blood vessels is a quite effective method. However, using this method, difficulties in blood vessel segmentation are often encountered due to the low contrast of the retinal blood vessel background and complex details of the blood vessel end. Thus, residual learning is introduced by adding a basic U-net network to the process of network design. Through the introduction of residual learning and attention mechanism modules into the basic U-net network in the process of network design, a new type of U-net-based RAU-net retinal blood vessel image segmentation algorithm is proposed. First, the residual module is added to the encoder stage of the network to address gradient explosion and disappearance caused by the deepening of the model network. Second, the attention gate module is introduced in the decoder stage of the network to suppress unnecessary features to ensure high accuracy of the model. Through verification of DRIVE, the accuracy, sensitivity, specificity, and F1-score of the algorithm reached 0.7832, 0.9815, 0.9568, and 0.8192, respectively. Thus, the segmentation effect was better than that of ordinary supervised learning algorithms

     

/

返回文章
返回