留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄膜衍射消热差红外光学系统设计

王烨菲 程艳萍 姚园 李道京 于潇

王烨菲, 程艳萍, 姚园, 李道京, 于潇. 薄膜衍射消热差红外光学系统设计[J]. 红外技术, 2021, 43(5): 422-428.
引用本文: 王烨菲, 程艳萍, 姚园, 李道京, 于潇. 薄膜衍射消热差红外光学系统设计[J]. 红外技术, 2021, 43(5): 422-428.
WANG Yefei, CHENG Yanping, YAO Yuan, LI Daojing, YU Xiao. Design of Membrane Diffractive Athermal Infrared Optical System[J]. Infrared Technology , 2021, 43(5): 422-428.
Citation: WANG Yefei, CHENG Yanping, YAO Yuan, LI Daojing, YU Xiao. Design of Membrane Diffractive Athermal Infrared Optical System[J]. Infrared Technology , 2021, 43(5): 422-428.

薄膜衍射消热差红外光学系统设计

基金项目: 

中国科学院国防重点实验室基金项目 CXJJ-19S014

高分辨率对地观测系统重大专项 GFZX0403260314

详细信息
    作者简介:

    王烨菲(1996-),女,研究实习员,主要从事光学系统设计方面的研究。E-mail:Rebecca2946@163.com

  • 中图分类号: TN216

Design of Membrane Diffractive Athermal Infrared Optical System

  • 摘要: 设计了一种薄膜衍射消热差红外光学系统。此光学系统口径为200 mm,焦距为200 mm,相对孔径为1,全视场角为3°,工作波段为10.7~10.9 μm。该系统采用薄膜衍射镜作为主镜,厚度为微米量级,具有口径大、重量轻的优点,解决了现有红外光学系统重量和口径无法调和的矛盾。利用含有衍射面的折衍混合透镜进行校正主镜带来的强色散,有效解决薄膜衍射主镜成像视场小、谱段范围窄等问题。采用薄膜衍射主镜、折衍混合透镜,很好地利用了衍射面良好的消热差特性,再结合透镜材料的选择,对光学系统消热差起到了良好的作用,并且,衍射面的使用为系统设计优化过程中增加了自由度。薄膜衍射消热差红外光学系统重量轻、成像质量好、消热差性能优良,在红外遥感成像探测领域具有良好的应用前景。
  • 图  1  薄膜衍射成像系统光学布局图

    Figure  1.  Optical layout of membrane diffractive imaging system

    图  2  薄膜衍射主镜光路图

    Figure  2.  Optical path diagram of membrane diffractive primary lens

    图  3  薄膜衍射主镜相位曲线

    Figure  3.  Phase curve of membrane diffractive primary lens

    图  4  薄膜衍射主镜MTF曲线

    Figure  4.  MTF of membrane diffractive primary lens

    图  5  薄膜衍射消热差红外光学系统光路图

    Figure  5.  Optical path diagram of membrane diffractive athermal infrared optical system

    图  6  红外光学系统不同环境温度下MTF曲线

    Figure  6.  MTF at different temperatures of the infrared optical system

    图  7  不同环境温度下场曲和畸变曲线

    Figure  7.  Field curvature and distortion at different temperatures

    图  8  薄膜衍射主镜衍射效率与入射角及波长关系

    Figure  8.  Relationship between membrane diffractive primary lens and incident angle and wavelength

    表  1  光学系统参数

    Table  1.   Optical system parameters

    System parameter Numerical value
    Wavelength band 10.7-10.9 μm
    Focal length 200 mm
    F number 1
    Working temperature -50℃-+60℃
    下载: 导出CSV

    表  2  光学系统公差

    Table  2.   Tolerance of optical system

    Component serial number Surface serial number RMS Thickness and air separation/mm Tilt/"
    1 1 0.025 ±0.02 40
    2 0.025 ±0.02 40
    2 1 0.025 ±0.02 40
    2 0.025 ±0.02 40
    3 1 0.025 ±0.02 40
    2 0.025 ±0.02 40
    4 1 0.025 ±0.02 40
    2 0.025 ±0.02 40
    5 1 0.025 ±0.02 40
    2 0.025 ±0.02 40
    6 1 0.025 ±0.02 40
    2 0.025 ±0.02 40
    7 1 0.025 ±0.02 40
    2 0.025 ±0.02 40
    下载: 导出CSV

    表  3  鬼像路径信息

    Table  3.   Ghost image path information

    Ghost image path Distance to ghost focus/mm Effective focal length/mm Marginal ray height/mm
    7-5 -0.1544 7.2220 -2.1375
    下载: 导出CSV

    表  4  不同级次下主镜衍射效率

    Table  4.   Diffraction efficiency of primary lens at different diffraction orders

    Diffraction order Diffraction efficiency
    -2 0.0009%
    -1 0.0022%
    +1 99.9600%
    +2 0.0089%
    +3 0.0022%
    下载: 导出CSV
  • [1] 项建胜, 潘国庆, 孟卫华. 一种激光与红外复合光学系统设计[J]. 激光与红外, 2018, 48(1): 104-108. doi:  10.3969/j.issn.1001-5078.2018.01.019

    XIANG Jiansheng, PAN Guoqing, MENG Weihua. Design of laser and infrared compound optical system[J]. Laser & Infrared, 2018, 48(1): 104-108. doi:  10.3969/j.issn.1001-5078.2018.01.019
    [2] 李杰, 罗箫, 吴晗平. 基于折/衍混合的机载红外光学系统设计[J]. 激光与红外, 2020, 50(2): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202002016.htm

    LI Jie, LUO Xiao, WU Hanping. Design of airborne infrared optical system based on refraction/diffraction hybrid[J]. Laser & Infrared, 2020, 50(2): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202002016.htm
    [3] 白瑜, 廖志远, 廖胜, 等. 共孔径消热差红外双波段光学系统[J]. 光学精密工程, 2016, 24(2): 268-277. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201602004.htm

    BAI Yu, LIAO Zhiyuan, LIAO Sheng, el al. Infrared dual band athermal optical system with common aperture[J]. Opt. Precision Eng., 2016, 24(2): 268-277. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201602004.htm
    [4] Atcheson P, Domber J, Whiteaker K, et al. MOIRE: ground demonstration of a large aperture diffractive transmissive telescope[C]//SPIE, 2014, 9143: 1-15.
    [5] 任智斌, 胡佳盛, 唐洪浪, 等. 10 m大口径薄膜衍射主镜的色差校正技术研究[J]. 光子学报, 2017, 46(4): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201704005.htm

    REN Zhibin, HU Jiasheng, TANG Honglang, et al. Study on Chromatic Aberration Correction of 10 Meter Large Aperture Membrane Diffractive Primary Lens[J]. Acta Photonica Sinica, 2017, 46(4): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201704005.htm
    [6] Hyde R A. Eyeglass. 1. Very large aperture diffractive telescopes[J]. Applied Optics, 1999, 38(19): 4198-212. doi:  10.1364/AO.38.004198
    [7] Early J T, Hyde R, Baron R L. Twenty-meter space telescope based on diffractive Fresnel lens[C]//Proceedings of SPIE the International Society for Optical Engineering, 2004, 5166: 148-156.
    [8] Atcheson P D, Stewart C, Domber J, et al. MOIRE: initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes[C]//Space Telescopes & Instrumentation: Optical, Infrared, & Millimeter Wave, 2012: 21.
    [9] Atcheson P, Domber J, Whiteaker K, et al. MOIRE: ground demonstration of a large aperture diffractive transmissive telescope[C]//SPIE Astronomical Telescopes + Instrumentation. International Society for Optics and Photonics, 2014, 9143: 91431W.
    [10] 张楠, 卢振武, 李凤有. 衍射望远镜光学系统设计[J]. 红外与激光工程, 2007(1): 106-108. doi:  10.3969/j.issn.1007-2276.2007.01.026

    ZHANG Nan, LU Zhenwu, LI Fengyou. Optical design of diffractive telescope[J]. Infrared and Laser Engineering, 2007(1): 106-108. doi:  10.3969/j.issn.1007-2276.2007.01.026
    [11] 王若秋, 张志宇, 薛栋林, 等. 用于空间望远镜的大口径高衍射效率薄膜菲涅尔衍射元件[J]. 红外与激光工程, 2017, 46(9): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201709019.htm

    WANG Ruoqiu, ZHANG Zhiyu, XUE Donglin, et al. Large-diameter high-efficiency diffractive Fresnel membrane elements for space telescope[J]. Infrared and Laser Engineering, 2017, 46(9): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201709019.htm
    [12] 杨伟, 吴时彬, 汪利华, 等. 微结构薄膜望远镜研究进展分析[J]. 光电工程, 2017, 44(5): 475-482. doi:  10.3969/j.issn.1003-501X.2017.05.001

    YANG Wei, WU Shibin, WANG Lihua, et al. Research advances and key technologies of macrostructure membrane telescope[J]. Opto-Electronic Engineering, 2017, 44(5): 475-482. doi:  10.3969/j.issn.1003-501X.2017.05.001
    [13] 张健, 栗孟娟, 阴刚华, 等. 用于太空望远镜的大口径薄膜菲涅尔衍射元件[J]. 光学精密工程, 2016, 24(6): 1289-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201606008.htm

    ZHANG Jian, LI Mengjuan, YIN Ganghua, et al. Large-diameter membrane Fresnel diffraction elements for space telescope[J]. Opt. Precision Eng. , 2016, 24(6): 1289-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201606008.htm
    [14] 吴海清, 田海霞, 崔莉. 大视场、大相对孔径长波红外机械无热化光学系统设计[J]. 红外, 2015, 36(8): 1-4, 8. doi:  10.3969/j.issn.1672-8785.2015.08.001

    WU Haiqing, TIAN Haixia, CUI Li. Design of Mechanically Athermalized Longwave Infrared Optical System with Wide Field of View and Large Relative Aperture[J]. Infrared, 2015, 36(8): 1-4, 8. doi:  10.3969/j.issn.1672-8785.2015.08.001
    [15] 韩莹, 王肇圻, 杨新军, 等. 8~12 μm波段折/衍混合反摄远系统消热差设计[J]. 光子学报, 2007, 36(1): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200701018.htm

    HAN Ying, WANG Zhaoqi, YANG Xinjun, et al. Design on Athermal Infrared Diffractive-Refractive Hybrid Inversed Telephoto System in 8~12 μm[J]. Acta Photonica Sinica, 2007, 36(1): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200701018.htm
    [16] 张发平, 张华卫. 基于二元衍射面的长波无热化光学系统设计[J]. 红外技术, 2020, 42(1): 25-29. http://hwjs.nvir.cn/article/id/hwjs202001004

    ZHANG Faping, ZHANG Huawei. Design of Long-wave Athermal Optical System Based on Binary Diffraction Surface[J]. Infrared Technology, 2020, 42(1): 25-29. http://hwjs.nvir.cn/article/id/hwjs202001004
    [17] 李升辉, 李欣, 李虹静. 基于谐衍射的红外双波段共口径消热差光学系统设计[J]. 红外技术, 2020, 42(1): 19-24. http://hwjs.nvir.cn/article/id/hwjs202001003

    LI Shenghui, LI Xin, LI Hongjing. Design of Infrared Dual-Band Common Aperture Thermal Elimination Optical System Based on Harmonic Diffraction[J]. Infrared Technology, 2020, 42(1): 19-24. http://hwjs.nvir.cn/article/id/hwjs202001003
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  45
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 修回日期:  2021-03-30
  • 刊出日期:  2021-05-22

目录

    /

    返回文章
    返回