Abstract:
The metal oxide semiconductor (MOS) resistor array is the key core device of infrared imaging target simulation systems. The quality of its projected infrared image directly affects the fidelity and reliability of infrared imaging guidance hardware-in-the-loop simulation tests. As the new generation domestic 512×512 MOS resistance array work mode and the multiplication of pixel scale and image data transmission resulted in higher requirements for drive control systems, the appropriate drive-and-control scheme was studied. The study was based on optical fiber data transmission and a PCI-Express high-speed bus and field programmable gate array. The problems of high data throughput and high-precision timing-signal generation were solved, and a high-speed establishment method for multi-channel analog signal was designed. The simulation verification showed that the drive-and-control scheme can reach a refresh rate of more than 200 Hz in the snapshot mode of the 512×512 MOS resistance array, and the gray-scale of each pixel was 16 bits. This study provides a reference for practical engineering applications of 512×512 MOS resistor array.