基于离散系数与Harris角点的微光像增强器闪烁噪声测试方法

刘峰阁, 苏天宁, 刘倍宏, 成帅, 朱荣胜, 姬明, 肖杰, 赵航, 张理淞, 常乐

刘峰阁, 苏天宁, 刘倍宏, 成帅, 朱荣胜, 姬明, 肖杰, 赵航, 张理淞, 常乐. 基于离散系数与Harris角点的微光像增强器闪烁噪声测试方法[J]. 红外技术, 2024, 46(10): 1154-1161.
引用本文: 刘峰阁, 苏天宁, 刘倍宏, 成帅, 朱荣胜, 姬明, 肖杰, 赵航, 张理淞, 常乐. 基于离散系数与Harris角点的微光像增强器闪烁噪声测试方法[J]. 红外技术, 2024, 46(10): 1154-1161.
LIU Fengge, SU Tianning, LIU Beihong, CHENG Shuai, ZHU Rongsheng, JI Ming, XIAO Jie, ZHAO Hang, ZHANG Lisong, CHANG Le. Flicker Noise Testing Based on a Discrete Coefficient and Harris Corner Point Detection for a Low-light Image Intensifier[J]. Infrared Technology , 2024, 46(10): 1154-1161.
Citation: LIU Fengge, SU Tianning, LIU Beihong, CHENG Shuai, ZHU Rongsheng, JI Ming, XIAO Jie, ZHAO Hang, ZHANG Lisong, CHANG Le. Flicker Noise Testing Based on a Discrete Coefficient and Harris Corner Point Detection for a Low-light Image Intensifier[J]. Infrared Technology , 2024, 46(10): 1154-1161.

基于离散系数与Harris角点的微光像增强器闪烁噪声测试方法

详细信息
    作者简介:

    刘峰阁(1985-),男,工程师,主要研究方向:非标专用设备设计开发。E-mail:lfg15925147665@163.com

  • 中图分类号: TP391.4

Flicker Noise Testing Based on a Discrete Coefficient and Harris Corner Point Detection for a Low-light Image Intensifier

  • 摘要:

    为了弥补信噪比无法在二维空间上准确定位分析像增强器闪烁噪声特性的不足,本文针对像增强器闪烁噪声特性设计了一种基于离散系数与Harris角点检测的微光像增强器闪烁噪声测试方法。本方法采用基于Gsense400BSI CMOS图像传感器的高帧频图像采集系统实现与像增强器荧光屏余晖时间相匹配的闪烁噪声图像采集。通过对连续多帧采集到的图像进行像素级离散系数计算,热点图实现可视化,与Harris角点检测算法能够准确分析像增强器荧光屏各区域内的闪烁噪声情况并准确标记荧光屏上的高亮噪点。实验结果表明,该方法能够实现像增强器闪烁噪声的二维分析与定位,从而为像增强器性能优化以及噪声特性测试提供技术支持。

    Abstract:

    To compensate for the insufficient signal-to-noise ratio, which cannot be accurately localized in two-dimensional space to analyze the flicker noise characteristics of an image intensifier, this study designs a low-light image intensifier flicker noise test method based on a discrete coefficient and Harris corner point detection for the image intensifier flicker noise characteristics. In this method, a high-frame-rate image acquisition system based on a Gsense400BSI CMOS image sensor was used to realize flicker noise image acquisition that matched the afterglow time of the fluorescent screen of the image intensifier. By calculating the pixel-level discrete coefficients of the images acquired from consecutive multiframes, a hotspot map was visualized. In addition, the Harris corner detection algorithm was used to accurately analyze the flicker noise in each region of the fluorescent screen of the image intensifier and mark the bright noise spots on the fluorescent screen. The experimental results show that this method can realize the two-dimensional analysis and localization of the flicker noise of the image intensifier and thus provide technical support for the performance optimization of the image intensifier and testing of noise characteristics.

  • 图  1   像增强器荧光屏噪声

    Figure  1.   Fluorescent screen noise of image intensifier

    图  2   高帧频图像采集系统实物

    Figure  2.   Photo of high frame rate image acquisition system

    图  3   闪烁噪声测试系统框图

    Figure  3.   Block diagram of flicker noise testing system

    图  4   不同照度下闪烁噪声图像

    Figure  4.   Flicker noise images under different illuminances

    图  5   闪烁噪声灰度热力分布图

    Figure  5.   Flicker noise grayscale thermal distribution map

    图  6   Moravec边缘检测原理[14]

    Figure  6.   Moravec edge detection principle[14]

    图  7   光源系统实物图

    Figure  7.   Photo of the light source system

    图  8   不同样片数量离散系数计算结果

    Figure  8.   Calculation results of dispersion coefficients for different sample quantities

    图  9   不同像增强器闪烁噪声与离散系数热力图

    Figure  9.   Thermogram of flicker noise and discrete coefficient of different image intensifiers

    图  10   不同照度下高亮噪声标记结果

    Figure  10.   High brightness noise labeling results under different illuminances

    图  11   不同像增强器高亮噪声标记结果

    Figure  11.   Different image intensifiers highlight noise labeling results

    表  1   像增强器离散系数与信噪比

    Table  1   Discretization coefficient and signal-to-noise ratio of image intensifiers

    Number 1 2 3 4 5 6
    Coefficient of variation 0.4410 0.4242 0.5069 0.4294 0.4177 0.4850
    SNR 24.28 24.66 22.28 24.55 26.08 22.51
    下载: 导出CSV

    表  2   Harris角点检测与人工检测结果对比

    Table  2   Comparison of Harris corner detection and manual detection results

    Number Noise type Harris corner detection results Manual detection results
    1 Highlight noise 5.3 5.5
    2 Highlight noise 4.7 4.4
    3 Highlight noise 5.1 5.3
    4 Highlight noise 4.2 4.5
    5 Highlight noise 5.6 5.4
    6 Highlight noise 4.1 4.2
    下载: 导出CSV
  • [1] 郭晖, 向世明, 田民强. 微光夜视技术发展动态评述[J]. 红外技术, 2013, 35(2): 63-68. http://hwjs.nvir.cn/article/id/hwjs201302003

    GUO H, XIANG S, TIAN M. A review of the development of low-light night vision technology[J]. Infrared Technology, 2013, 35(2): 63-68. http://hwjs.nvir.cn/article/id/hwjs201302003

    [2] 白廷柱, 金伟其. 光电成像原理与技术[M]. 北京: 北京理工大学出版社, 2013: 245-251.

    BAI T, JIN W. Principle and Technology of Photoelectronic Imaging[M]. Beijing: Beijing Institute of Technology Press, 2013: 245-251.

    [3] 李廷涛, 龚燕妮, 曾进能, 等. 超二代像增强器分辨力提高方法[J]. 红外技术, 2023, 45(4): 335-341. http://hwjs.nvir.cn/article/id/c45178e3-08f1-4438-af3b-e722087aa366

    LI T, GONG Y, ZENG J, et al. Methods for resolution improvement of super Ⅱ image intensifier[J]. Infrared Technology, 2023, 45(4): 335-341. http://hwjs.nvir.cn/article/id/c45178e3-08f1-4438-af3b-e722087aa366

    [4] 孙默涵, 钱芸生, 任莹楠, 等. 基于自动亮度控制模型的门控微光像增强器荧光屏亮度研究[J]. 光子学报, 2022, 51(3): 0304004.

    SUN M, QIAN Y, REN Y, et al. Brightness of the screen of gated low light level image intensifier based on automatic brightness control model[J]. Acta Photonica Sinca, 2022, 51(3): 0304004.

    [5] 姚泽, 程宏昌, 李涛, 等. 基于P31荧光粉的像增强器余辉测量方法研究[J]. 应用光学, 2020, 41(4): 796-800.

    YAO Z, CHEN H, LI T, et al. Research on afterglow measurement method of image intensifier based on P31 phosphor powder[J]. Journal of Applied Optics, 2020, 41(4): 796-800.

    [6] 李晓峰, 杜木林, 徐传平, 等. 影响超二代像增强器最高增益的因数分析[J]. 光子学报, 2022, 51(3): 1-12.

    LI X, DU M, XV C, et al. Analysis on factors affecting the maximum gain of super second generation image intensifier[J]. Acta Photonica Sinca, 2022, 51(3): 1-12.

    [7] 金伟其, 张琴, 王霞等. 一种改进的直视型微光夜视系统视距模型[J]. 光子学报, 2020, 49(4): 0411001.

    JIN W, ZHANG Q, WANG X, et al. An improved apparent distance model for direct-view low-light-level night vision system[J]. Acta Photonica Sinca, 2020, 49(4): 0411001.

    [8] 潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001

    PAN J. Image intensifier upgraded performance and evaluation standard[J]. Intrared Technology, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001

    [9] 王洪刚. 像增强器的电子运输与噪声特性研究[D]. 南京: 南京理工大学, 2015.

    WANG H. Research on the Electron Transport and Noise Characteristics of Image Intensifiers[D]. Nanjing: Nanjing University of Science & Technology, 2015.

    [10] 向世明. 微光像增强器信噪比理论极限问题研究[J]. 应用光学, 2008, 34(5): 724-726.

    XIANG S. Theoretical limit for SNR of LLL image intensifiers[J]. Journal of Applied Optics, 2008, 34(5): 724-726.

    [11] 杨敏杰, 钱芸生, 严毅赟, 等. 基于CMOS图像传感器的像增强器闪烁噪声测试系统[J]. 激光与光电子学进展, 2021, 60(2): 316-321.

    YANG M, QIAN Y, YAN Y, et al. Scintillation noise test system of image intensifier based on CMOS image sensor[J]. Laser & Optoelectronics Progress, 2021, 60(2): 316-321.

    [12] 卢杰, 常乐, 陈益新, 等. 微光像增强器纳秒级荧光屏余晖时间测试系统[J]. 应用光学, 2022, 43(6): 1130-1137.

    LU J, CHANG L, CHEN Y, et al. Development of afterglow time test system for nanosecond fluorescent screen of low-level-light image intensifier[J]. Journal of Applied Optics, 2022, 43(6): 1130-1137.

    [13] 丁姝晨, 钱芸生, 林焱剑, 等. 基于光晕的微通道板黑点检测方法[J]. 应用光学, 2022, 43(6): 1145-1152.

    DING S, QIAN Y, LIN Y, et al. Halo-based black point detection method of microchannel plate[J]. Journal of Applied Optics, 2022, 43(6): 1145-1152.

    [14] 丁雄飞, 张春燕. 基于Moravec算子和改进的SIFT算法的图像匹配[J]. 合肥学院学报(自然科学版), 2013, 2(3): 40-42.

    DING X, ZHANG C. Moravec operator and improvements of the SIFT algorithm-based image matching[J]. Journal of Hefei University (Natural Sciences), 2013, 2(3): 40-42.

    [15] 高翔, 万成浩, 李润生. 一种基于Harris-Laplace算法的亚像素角点检测方法[J]. 测绘科学技术学报, 2017, 34(5): 475-480.

    GAO X, WAN C, LI R. A sub-pixel corner detection method based on harris-Laplace algorithm[J]. Journal of Geomatics Science and Technology, 2017, 34(5): 475-480.

  • 期刊类型引用(19)

    1. 姜迈,沙贵君,李宁. 基于引导滤波与双树复小波变换的红外与可见光图像融合. 激光与光电子学进展. 2023(10): 110-120 . 百度学术
    2. 曹海玲,王正海,秦昊洋,孙袁超,尹国盼. 基于加权融合TIR数据的LST反演与硅化信息提取——以广东仁差盆地铀多金属矿区为例. 遥感学报. 2023(07): 1691-1701 . 百度学术
    3. 王红君,杨一鸣,赵辉,岳有军. 基于PIE和CGAN的无人农机红外与可见光图像融合. 红外技术. 2023(12): 1223-1229 . 本站查看
    4. 王红君,杨一鸣,赵辉,岳有军. 基于PIE和CGAN的无人农机红外与可见光图像融合. 红外技术. 2023(11): 1223-1229 . 本站查看
    5. 汪澎,盛兆哲,黄智远. 铁路电力系统场站异常温升极早期预警技术与应用综述. 电工技术. 2023(24): 122-124 . 百度学术
    6. 魏亚南,曲怀敬,王纪委,徐佳,张志升,谢明,张汉元. 基于NSCT和卷积稀疏表示的红外与可见光图像融合. 计算机与数字工程. 2022(02): 276-283 . 百度学术
    7. 李明明,王新赛,冯小二. 基于K-means聚类与NSCT的图像融合算法. 火力与指挥控制. 2022(02): 146-151 . 百度学术
    8. 李爱娟,巩春鹏,黄欣,曹家平,刘刚. 自动驾驶汽车目标检测方法综述. 山东交通学院学报. 2022(03): 20-29 . 百度学术
    9. 杨涛,闫杰. 乡村建筑群形态结构的演变过程三维仿真. 计算机仿真. 2022(07): 238-242 . 百度学术
    10. 陈黎艳,熊强强,曾美琳. 基于改进逆滤波的红外图像目标信息快速复原研究. 激光杂志. 2022(08): 164-168 . 百度学术
    11. 高银花,陈进,季霞. 基于虚拟现实技术的光照变化场景三维建模研究. 激光杂志. 2022(11): 204-209 . 百度学术
    12. 黄艺,龚文辉. 虚拟全景影像数据FCM聚类优化仿真. 计算机仿真. 2022(11): 220-223+239 . 百度学术
    13. 喻凌峰. 基于多传感器数据融合的隧道火灾监测报警技术研究. 隧道建设(中英文). 2022(S2): 261-266 . 百度学术
    14. 杨孙运,奚峥皓,王汉东,罗晓,阚秀. 基于NSCT和最小化-局部平均梯度的图像融合. 红外技术. 2021(01): 13-20 . 本站查看
    15. 刘佳,李登峰. 马氏距离与引导滤波加权的红外与可见光图像融合. 红外技术. 2021(02): 162-169 . 本站查看
    16. 林剑萍,廖一鹏. 结合分数阶显著性检测及量子烟花算法的NSST域图像融合. 光学精密工程. 2021(06): 1406-1419 . 百度学术
    17. 王才东,刘丰阳,李志航,陈志宏,程岩,郑华栋. 基于双目视觉特征点匹配的图像拼接方法研究. 激光与光电子学进展. 2021(12): 357-365 . 百度学术
    18. 薛彬,吴志生,孟庆森. 基于多特征组合的光学元件表面疵病检测. 激光杂志. 2021(12): 108-113 . 百度学术
    19. 包达尔罕,高文炜,杨金颖. 基于混合l_0l_1层分解的红外光强与偏振图像融合算法. 红外技术. 2020(07): 676-682+701 . 本站查看

    其他类型引用(26)

图(11)  /  表(2)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  4
  • PDF下载量:  23
  • 被引次数: 45
出版历程
  • 收稿日期:  2023-09-30
  • 修回日期:  2023-10-24
  • 刊出日期:  2024-10-19

目录

    /

    返回文章
    返回