Calculation of Temperature and Radiation Characteristics of Midcourse Ballistic Missiles
-
摘要: 中段飞行弹道导弹目标辐射特性对于探测手段选择、传感器设计等具有重要意义。以采用红外隐身技术的弹道导弹为研究对象,考虑表面隐身涂层特性和进出地影的影响,采用有限体积法计算了弹道导弹在整个中段飞行过程中的温度变化;结合导弹自身辐射与太阳、地球辐射光谱,给出了导弹0~15 μm范围内的辐射特性;研究了导弹表面温度和辐射特性的关系,不同表面涂层在光照与地影状态下的探测差异。结果表明,相比于表面温度,涂层光学参数对导弹辐射特性的影响更大,同一涂层的可见光和红外突防效能存在矛盾,可以采用两种探测方法协作,提高探测能力。Abstract: The radiation characteristics of mid-course ballistic missiles are the basis and premise for their detection and identification. Radiation characteristics have an important guiding meaning in the selection of detection methods, sensor design, etc. Taking a ballistic missile with infrared stealth technology as the research object, and considering the factors of stealth coatings and the influence of earth shadows, the temperature and its variation trend are calculated using the finite-volume method. Combining the radiation of the missile with solar and earth radiation spectra, the radiation characteristics are presented within for missile wavelengths ranging from 0–15 μm. The relationship between the surface temperature and the radiation intensity of the missile is studied. The detection differences of different surface coatings under illumination and shadow conditions are discussed. The results show that the optical parameters of the coating have a greater influence on the radiation characteristics of the missile than the surface temperature. There is disagreement between the penetration effectiveness in the visible and infrared wavebands. Visible and infrared detection methods can be used simultaneously to improve detection capability.
-
Keywords:
- ballistic missiles /
- radiation characteristics /
- stealth coatings
-
-
表 1 几种涂层材料可见光吸收率及红发射率[17]
Table 1 Solar absorptance and IR emissivity of several coating materials
Numbers Paints αS εIR αS/εIR No.1 White paint 0.19 0.94 0.2 No.2 Polyester resin 0.17 0.5 0.34 No.3 Aluminum silicon paint 0.25 0.28 0.89 No.4 Grey paint 0.87 0.87 1 No.5 Aluminum paint 0.54 0.45 1.2 No.6 Graphite paint 0.782 0.49 1.6 No.7 Aluminum foil 0.192 0.036 5.33 -
[1] 李士刚, 张力争. 弹道导弹突防措施分析[J]. 指挥控制与仿真, 2014, 36(6): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZH201406017.htm LI Shigang, ZHANG Lizheng. Analysis on penetration strategies for ballistic missile[J]. Command Control & Simulation, 2014, 36(6): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZH201406017.htm
[2] Ender T, Leurck R F, Weaver B, et al. Systems-of-systems analysis of ballistic missile defense architecture effectiveness through surrogate modeling and simulation[J]. IEEE Systems Journal, 2010, 4(2): 156-166. DOI: 10.1109/JSYST.2010.2045541
[3] 丰松江, 聂万胜. 中段弹道导弹和背景红外辐射研究概况[J]. 红外, 2006, 27(11): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI200611007.htm FENG Songjiang, NIE Wansheng. Study on infrared radiation of ballistic missile targets and their background in midcourse[J]. Infrared, 2006, 27(11): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI200611007.htm
[4] 申文涛, 朱定强, 蔡国飙. 中段弹道目标的温度场与红外辐射特性计算[J]. 宇航学报, 2010, 31(9): 2210-2217. DOI: 10.3873/j.issn.1000-1328.2010.09.023 SHEN Wentao, ZHU Dingqiang, CAI Guobiao. Calculation of temperature field and infrared radiation characteristics of midcourse ballistic target[J]. Journal of Astronautics, 2010, 31(9): 2210-2217. DOI: 10.3873/j.issn.1000-1328.2010.09.023
[5] 罗晨星, 盛文. 弹头壁面温度场建模及红外辐射特性研究[J]. 空军预警学院学报, 2014, 28(4): 254-257. DOI: 10.3969/j.issn.2095-5839.2014.04.006 LUO Chenxing, SHENG Wen. Modeling of missile wall temperature field and its infrared radiation characteristics[J]. Journal of Air Force Early Warning Academy, 2014, 28(4): 254-257. DOI: 10.3969/j.issn.2095-5839.2014.04.006
[6] 杨星, 吴晓迪, 陈杰. 包络球与空间气球间温度分布及红外辐射特性的差异[J]. 红外技术, 2018(4): 395-399. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201804015.htm YANG Xing, WU Xiaodi, CHEN Jie. Differences of temperature distribution and infrared radiation feature between envelope balloon and spatial balloon[J]. Infrared Technology, 2018(4): 395-399. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201804015.htm
[7] 孙成明, 袁艳, 赵飞. 空间目标天基成像探测信噪比分析[J]. 红外与激光工程, 2015, 44(5): 1654-1659. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201505047.htm SUN Chengming, YUAN Yan, ZHAO Fei. Analysis of SNR for space-based imaging detection of space object[J]. Infrared and Laser Engineering, 2015, 44(5): 1654-1659. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201505047.htm
[8] 王盈, 黄建明, 魏祥泉. 空间目标在轨红外成像仿真[J]. 红外与激光工程, 2015, 44(9): 2593-2597. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201509010.htm WANG Ying, HUANG Jianming, WEI Xiangquan. Infrared imaging simulation of space target in orbit[J]. Infrared and Laser Engineering, 2015, 44(9): 2593-2597. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201509010.htm
[9] 黄浩, 陶华敏, 陈尚锋. 基于混合融合策略的双波段红外小目标检测方法[J]. 红外与激光工程, 2014, 43(9): 2827-2831. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201409008.htm HUANG Hao, TAO Huamin, CHEN Shangfeng. Dual-band infrared dim target detection based on hybrid fusion algorithm[J]. Infrared and Laser Engineering, 2014, 43(9): 2827-2831. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201409008.htm
[10] Adomeit U, Ebert R. Improved target detection by IR dual-band image fusion[C]//Proc. Of SPIE, 2009, 7481: 74810B.
[11] 杨桄, 童涛, 陆松岩, 等. 基于多特征的红外与可见光图像融合[J]. 光学精密工程, 2014, 22(2): 489-496. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201402034.htm YANG Guang, TONG Tao, LU Songyan, et al. Fusion of infrared and visible images based on multi-features[J]. Optics and Precision Engineering, 2014, 22(2): 489-496. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201402034.htm
[12] 王宇庆, 王索建. 红外与可见光融合图像的质量评价[J]. 中国光学, 2014, 7(3): 396-401. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201403007.htm WANG Yuqing, WANG Suojian. Quality assessment method of IR and visible fusion image[J]. Chinese Journal of Optics, 2014, 7(3): 396-401. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201403007.htm
[13] 王霄, 高思莉, 李范鸣. 深空双波段红外动态场景仿真与目标分析[J]. 激光与红外, 2017, 47(9): 1123-1127. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201709013.htm WANG Xiao, GAO Sili, LI Fanming. Simulation and target analysis of dual-band infrared dynamic scene in deep space[J]. Infrared and Laser Engineering, 2017, 47(9): 1123-1127. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201709013.htm
[14] 李波. 红外隐身技术的应用及发展趋势[J]. 中国光学, 2013, 6(6): 818-823. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201306004.htm LI Bo. Application and development trend of infrared stealth technology[J]. Chinese Journal of Optics, 2013, 6(6): 818-823. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201306004.htm
[15] 周啟航, 张刘, 霍明英, 等. 弹道导弹中段突防弹道设计与验证[J]. 光学精密工程, 2015, 23(9): 2645-2655. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201509028.htm ZHOU Qihang, ZHANG Liu, HUO Mingying, et al. Design and validation of ballistic missile midcourse penetration trajectory[J]. Optics and Precision Engineering, 2015, 23(9): 2645-2655. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201509028.htm
[16] 张骏, 杨华, 凌永顺, 等. 弹道导弹中段弹头表面温度场分布理论分析[J]. 红外与激光工程, 2005, 34(5): 582-586. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200505017.htm ZHANG Jun, YANG Hua, LING Yongshun, et al. Theoretical analysis of temperature field on the surface of ballistic missile warhead in midcourse[J]. Infrared and Laser Engineering, 2005, 34(5): 582-586. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200505017.htm
[17] 刘石泉. 弹道导弹突防技术导论[M]. 北京: 中国宇航出版社, 2003: 179-184. -
期刊类型引用(6)
1. 史珮颖,孟夏莹,朱凌轩,杜君,王月娟. 基于CART算法的空间目标本体反演方法. 制导与引信. 2024(01): 38-42 . 百度学术
2. 吴钇达,王彩云,王佳宁,李晓飞. 基于ISVM-DS的红外多传感器融合识别方法. 系统工程与电子技术. 2024(05): 1555-1560 . 百度学术
3. Mei Liang,Zhuo Sun,Jiasong Liu,Yongsheng Wang,Lei Liang,Long Zhang. True-temperature inversion algorithm for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization. Nanotechnology and Precision Engineering. 2024(01): 59-66 . 必应学术
4. 王彩云,常韵,李晓飞,王佳宁,吴钇达,张慧雯. 基于改进MKELM的红外空间锥体目标识别. 系统工程与电子技术. 2024(10): 3257-3264 . 百度学术
5. 袁良,袁林光,董再天,李燕,范纪红,卢飞,赵俊成,张灯,尤越. 高温状态下的材料法向光谱发射率测量. 应用光学. 2023(03): 580-585 . 百度学术
6. 曾建华,叶子菁,徐路通,姜贵文. 双凸透镜组实现光学隐形的实验探究. 上饶师范学院学报. 2023(03): 26-30 . 百度学术
其他类型引用(2)