全局-局部注意力引导的红外图像恢复算法

Global-Local Attention-Guided Reconstruction Network for Infrared Image

  • 摘要: 针对真实世界的红外图像恢复算法中存在的图像模糊、纹理失真、参数过大等问题,提出了一种用于真实红外图像的全局-局部注意力引导的超分辨率重建算法。首先,设计了一种跨尺度的全局-局部特征融合模块,利用多尺度卷积和Transformer并行融合不同尺度的信息,并通过可学习因子引导全局和局部信息的有效融合。其次,提出了一种新颖的退化算法,即域随机化退化算法,以适应真实红外场景图像的退化域。最后,设计了一种新的混合损失函数,利用权重学习和正则化惩罚来增强网络的恢复能力,同时加快收敛速度。在经典退化图像和真实场景红外图像上的测试结果表明,与现有方法相比,该算法恢复的图像纹理更逼真,边界伪影更少,同时参数总数最多可减少20%。

     

    Abstract: To solve the problems of image blur smoothing, texture distortion, and excessively large parameters in real-world infrared-image recovery algorithms, a global-local attention-guided super-resolution reconstruction algorithm for infrared images is proposed. First, a cross-scale global-local feature fusion module utilizes multi-scale convolution and a transformer to fuse information at different scales in parallel and to guide the effective fusion of global and local information by learnable factors. Second, a novel domain randomization degradation model accommodates the degradation domain of real-world infrared images. Finally, a new hybrid loss based on weight learning and regularization penalty enhances the recovery capability of the network while speeding up convergence. Test results on classical degraded images and real-world infrared images show that, compared with existing methods, the images recovered by the proposed algorithm have more realistic textures and fewer boundary artifacts. Moreover, the total number of parameters can be reduced by up to 20%.

     

/

返回文章
返回