等体积不同纵横比水滴粒子的光学特性计算

Calculation of Optical Properties of Water Droplets with Equal Volume and Different Aspect Ratios

  • 摘要: 不同重力场环境中水滴粒子的形状会偏离球形,为了研究水滴粒子非球形化程度对其光学特性的影响,本文计算了不同方向取向下,等体积不同纵横比水滴粒子在3.0~5.0 μm波段的光学特性。研究发现虽然不同纵横比水滴粒子的光学特性在3.0~5.0 μm波段的变化趋势相似,但具体数值仍然明显依赖于水滴粒子的空间取向和偏离球形程度。总体而言,水滴粒子的吸收截面只在方位角θ较小和波长较短时随其纵横比显著变化;而散射截面、不对称因子和散射相函数则在任意方位角和波长下都对水滴粒子的纵横比有较明显的依赖。因此,由于光学特性对水滴粒子的纵横比有较强的依赖性,由水滴粒子所组成的水雾的辐射传输特性会强烈依赖于水滴粒子的形状。

     

    Abstract: To study the influence of the asphericity degree on droplet particles optical properties in different gravity fields, the optical properties of water droplet with equal volume and different aspect ratios in the wavelength between 3.0 μm and 5.0 μm were calculated. It was found that although the changing trend of the optical properties of the water droplets with wavelength is very similar, their specific values significantly depend on the spatial orientation and the asphericity degree of water droplets. In general, the absorption cross section of water droplets strongly depends on its aspect ratio only when the azimuth angle θ is small and the wavelength is short. In contrast, the scattering cross section, asymmetry factor, and scattering phase function depend on the aspect ratio of water droplets at any azimuth angle and wavelength. Therefore, because the optical properties are strongly dependent on the aspect ratio of the droplet particles, the radiation transmission properties of fog composed of water droplets should exhibit different results in different gravitational fields.

     

/

返回文章
返回