基于CSE-YOLOv5的遥感图像目标检测方法

Remote Sensing Image Target Detection Method Based on CSE-YOLOv5

  • 摘要: 针对复杂任务场景中,目标检测存在的多尺度特征学习能力不足、检测精度与模型参数量难以平衡的问题,提出一种基于CSE-YOLOv5(CBAM-SPPF-EIoU-YOLOv5,CSE-YOLOv5)模型的目标检测方法。模型以YOLOv5主干网络框架为基础,在浅层引入卷积块注意力机制层,以提高模型细化特征提取能力并抑制冗余信息干扰。在深层设计了串行结构空间金字塔快速池化层,改进了统计池化方法,实现了由浅入深地融合多尺度关键特征信息。此外,通过改进损失函数与优化锚框机制,进一步增强多尺度特征学习能力。实验结果显示,CSE-YOLOv5系列模型在公开数据集RSOD、DIOR和DOTA上表现出良好的性能。mAP@0.5的平均值分别为96.8%、92.0%和71.0%,而mAP@0.5:0.95的平均值分别为87.0%、78.5%和61.9%。此外,该模型的推理速度满足实时性要求。与YOLOv5系列模型相比,CSE-YOLOv5模型的性能显著提升,并且在与其他主流模型的比较中展现出更好的检测效果。

     

    Abstract: We proposed a new object detection method based on the CSE-YOLOv5 (CBAM-SPPF-EIoU-YOLOv5) model for insufficient multi-scale feature learning ability and the difficulty of balancing detection accuracy and model parameter quantity in remote sensing image object detection algorithms in complex task scenarios. We built this method on the YOLOv5 model's backbone network framework and introduced a convolutional attention mechanism layer into the shallow layers to enhance the model's ability to extract refined features and suppress redundant information interference. In the deep layers, we constructed a spatial pyramid pooling fast (SPPF) with a tandem construction module and improved the statistical pooling method to fuse multi-scale key feature information from shallow to deep. In addition, we further enhanced the multi-scale feature learning ability by optimizing the anchor box mechanism and improving the loss function. The experimental results demonstrated the superior performance of the CSE-YOLOv5 series models on the publicly available datasets RSOD, DIOR, and DOTA. The average mean precisions (mAP@0.5) were 96.8%, 92.0%, and 71.0% for RSOD, DIOR, and DOTA, respectively. Furthermore, the average mAP@0.5:0.95 at a wider IoU range of 0.5 to 0.95 achieved 87.0%, 78.5%, and 61.9% on the same datasets. The inference speed of the model satisfied the real-time requirements. Compared to the YOLOv5 series models, the CSE-YOLOv5 model exhibited significant performance enhancements and surpassed other mainstream models in object detection.

     

/

返回文章
返回