Development of Highly Efficient Tandem White OLEDs
-
摘要: 叠层有机发光二极管(Organic Light-Emitting Diode,OLED)白光器件具备低功耗、高亮度、高色域等性能优势。然而,由于效率、寿命及驱动电压等性能仍有较大改进空间,叠层结构的材料及电学结构仍需进一步优化。本文重点介绍叠层OLED白光器件的最新研究进展,总结了三类电荷产生层(Charge Generation Layer,CGL)在工程化应用中存在的问题以及其非破坏性检测方法;综述高效叠层OLED白光器件的“全磷光体系”、“并行通道激子收集”及“混合磷光热活性型延迟荧光(Thermally Activated Delayed Fluorescence,TADF)体系”最新研究成果,对器件寿命问题进行总结,探讨分析“分级掺杂”、“四色混合TADF体系”等从结构方面提出优化方案,并针对不同发光材料体系中的CGL材料及结构综述叠层OLED白光器件实现较低工作电压的技术方法,最后对叠层OLED白光器件的材料和结构提出改进建议。
-
关键词:
- 叠层白光有机发光二极管 /
- 电荷产生层 /
- 有机发光单元 /
- 功能层结构 /
- 有机发光材料
Abstract: Tandem white OLEDs offer low power consumption, high brightness, and a high color gamut. However, the material and electrical structures of tandem white OLEDs still need to be optimized owing to the outstanding challenges in efficiency, lifetime, and driving voltage. In this study, we focused on the latest research on tandem white OLEDs and summarized the problems in engineering preparation and non-destructive detection method of 3 types of CGLs for high-efficiency tandem white OLEDs. We focused on the latest research on the "all-phosphorescent system, " "harvesting excitons via two parallel channels, " and the "mixed-phosphorescent-TADF system" simultaneously. We summarized the device lifetime problems and discussed structural solutions such as "graded doping" and "four-color mixed-phosphorescent-TADF system." From the aspect of CGL materials and structures in different systems, we reviewed the scheme of lower driving voltage for tandem white OLEDs. Finally, we provided suggestions for improving the materials and structures of tandem white OLEDs. -
0. 引言
夜视仪作为夜间行军作战的重要装备,一直以来是各国研究的重点,围绕着红外、微光等技术研制出不同种类的夜视装备,其中头盔夜视仪是单兵装备发展的要点[1]。微光头盔利用目标反射的低照度(10-1~10-3 lx)月光、星光、大气辉光等光线,通过微光物镜汇聚到微光头盔的核心器件微光像增强器上并转换为电子,电子进行倍增后轰击荧光屏,形成人眼可视的图像[2]。使用二代或二代半技术的微光头盔为被动工作方式,容易受外界光照度的影响,但价格相对便宜,是现役头盔装备中的主流产品[3]。与微光头盔相比,红外头盔是一种利用目标与背景辐射能量的差异而成像,是一种被动工作方式,它工作时不受外界照度的影响,并具有一定的穿透烟、雾、尘等的能力和识别简单伪装的能力。
为了实现微光与红外各自的技术优势,图像融合技术逐渐成为主流发展方向。为了给士兵提供更多的图像信息,美军开发出一款微光与红外光学式图像融合的头盔夜视仪(AN/PSQ-20),此夜视仪具有微光、红外双光通道,可将目标的微光图像和红外图像进行光学叠加融合,实现微光与红外各自技术优势的互补[4]。AN/PSQ-20头盔夜视仪采用微光与红外独立镜头的设计模式,造成夜视仪体积较大、重量较重,佩戴舒适性不好[1,5]。
为了减轻佩戴重量及在现役微光头盔的基础上实现微光与红外的图像融合,美军后续开发出一款可拆卸、悬挂式的红外热像仪AN/PAS-29A,此热像仪是一款倍率为1×的红外望远镜。在需要观察微光与红外融合图像时,可把AN/PAS-29A悬挂在微光头盔上,通过微光头盔可观察到微光与红外的光学融合图像。
国内现役装备的微光头盔主要是使用二代或超二代像增强器的产品,没有装备微光与红外融合的头盔产品,也没有见到相关产品信息的公开报道。
本文在AN/PAS-29A红外热像仪及国内成熟器件的基础上开展基于微光头盔观察、悬挂式红外夜视仪光学系统的仿真设计。
1. 技术方案分析
1.1 悬挂式红外夜视仪与微光头盔组合工作模式
微光头盔与悬挂式红外夜视仪组合使用型式如图1所示。悬挂式红外夜视仪主要由红外组件和投影组件所组成,二者组成1×的红外望远镜系统。目标与背景辐射的能量差异被悬挂式红外热像仪接收并转换为人眼可视图像,此可视图像以平行光出射的方式投射到微光头盔上,形成微光与红外光学叠加式的融合图像,如图2所示。微光头盔与悬挂式红外夜视仪工作示意图如图3所示。
对于头戴辅助夜视系统,其视放大率要求为1×,则对应的微光头盔及悬挂式红外夜视仪的视放大率需要设定为1×,此时可保证当悬挂式红外夜视仪悬挂在微光头盔上组合使用时的视放大率达到1×的使用要求。
1.2 图像旋转设计方案
由于悬挂式红外夜视仪采用外挂使用方式,可悬挂在微光头盔的下侧,也可悬挂在微光头盔的左右两侧。随着悬挂方式的不同,以悬挂式红外夜视仪内置的电子罗盘判断悬挂方位,以图像中心为基准进行90°的4个相位旋转,以适应左侧、左下、右侧、右下,共4个不同挂装位置。
通过分析标准视频信号,如果全画幅使用,其图像长宽的比例为4:3,只能进行左右、上下镜像处理,不能满足使用要求。要实现90°的4个方向旋转,需要器件感光部分尺寸和显示部分尺寸的长宽比例均为1:1。基于此设计要求,悬挂式红外夜视仪的红外成像机芯感光面分辨率为288×288,OLED显示面分辨率为576×576,其余像素做消隐处理,如图4所示。
1.3 圆形视场设计方案
此悬挂式红外夜视仪把OLED所成图像投影到1×微光头盔前端,经1×微光头盔后被人眼观察。微光头盔的成像器件是微光像增强器,其感光面和显示面均为圆形,悬挂式红外夜视仪所投影图像为圆形可与微光头盔实现更好的图像融合效果。
基于此红外物镜设计视场为圆形,其线视场为288×288方形区域的内接圆,方形区域与内接圆区域之间的区域(夹层区域)也参与成像,其成像质量不做控制。依据光学仿真分析,夹层区域的图像质量随距离圆心间隔的增大,图像质量逐渐变坏,是一个渐变的过程。OLED所成图像也为方形,此时在贴近OLED保护窗处放置一个圆形视场光阑,此时通过OLED所投射的图像为圆形图像,并通过微光头盔被人眼观察,如图5所示。
2. 悬挂式红外夜视仪光学仿真分析
2.1 设计指标
从夜视仪的重量、体积及成本综合考虑,红外物镜选用384×288、17 μm的非制冷型长波红外机芯、投影物镜选用800×600、12.6 μm的微型OLED显示器。所选器件是市面批量供应的器件,性能稳定、货源充足。红外物镜焦距选择13.88 mm,F数选择为1,圆形视场为20°;投影物镜焦距选择为20.58 mm,F数选择为4,圆形视场为20°。红外物镜和投影物镜组成1×的红外望远镜,对应圆形视场为20°。悬挂式红外夜视仪光学设计参数如表1所示。
表 1 悬挂式红外夜视仪光学参数Table 1. Optical parameters of suspended infrared night visionInfrared lens Focal length
Field
F/#
Band
Detector type13.88 mm
20°(circular)
1
8~12 μm
UFPA 384×288, 17 μmProjection lens Focal length
Field
F/#
Band20.58 mm
20°(circular)
4
0.486~0.656 μmDetector type OLED 800×600, 12.6 μm Exit pupil distance 3.7 mm Suspended infrared night vision Field
Magnification
Temperature20°(circular)
1×
−40℃~60℃2.2 红外物镜光学仿真分析
为了尽可能地减小悬挂式红外夜视仪的体积、重量并适应不同的工作温度,红外物镜采取定焦光学被动消热差设计方式,红外物镜的设计型式见图6。红外物镜光学透镜材料选择Ge和IRG206,镜筒材料选择铝合金,面型选择常用的球面、非球面和二元衍射面,其中二元衍射面放置在第二透镜的前表面上。通过以上组合型式进行红外物镜的光学性能优化设计,使像面在各个温度点下都与红外机芯的靶面相重合。
红外物镜在常温(20℃)、低温(-40℃)和高温(60℃)条件下的传递函数(MTF)曲线如图7所示。红外物镜的MTF在奈奎斯特频率(29.4 lp/mm)处除边缘视场外对比度约在0.5以上,中心视场区域的对比度接近衍射极限,依此判断红外物镜在工作温度范围内像差校正效果较好。
2.3 投影物镜光学仿真分析
投影物镜由两个双胶合透镜及一个直角棱镜所组成,其设计型式见图8。所选透镜材料均为成都光明的环保型无色玻璃,镜筒选用铝合金材料。投影物镜也采用光学被动消热差的设计型式,依此来减少温度变化而带来的调节环节,进而减轻体积和重量。
投影物镜在常温(20℃)、低温(-40℃)和高温(60℃)条件下的传递函数(MTF)曲线如图9所示。投影物镜的MTF在奈奎斯特频率(39.7 lp/mm)处除边缘视场外对比度约在0.7以上,中心视场区域的对比度接近衍射极限。根据1.2节所述,红外机芯实际使用分辨率为288×288,OLED显示所用的分辨率为576×576,则投影物镜实际使用的MTF频率为奈奎斯特频率的一半。据此在常温、低温和高温条件下投影物镜的MTF在19.9 lp/mm处除边缘视场外对比度约在0.9以上。依据以上分析,投影物镜校正后成像质量良好,能满足使用要求。
3. 光学融合配准精度分析
3.1 悬挂式红外夜视仪悬挂精度分析
由于悬挂式红外夜视仪与1×微光头盔之间采用外挂式工作模式,并使用平行光路进行图像传输,可避免出现模糊的融合图像。
悬挂式红外夜视仪的视放大率为1×,则具有以下关系:
$$ 1 = \frac{{{f_{\text{w}}}}}{{{f_{\text{t}}}}} \cdot \frac{{{d_{{\text{OLED}}}}}}{{{d_{{\text{UFPA}}}}}} $$ (1) 式中:红外物镜的焦距为fw;投影物镜的焦距为ft;dOLED为OLED圆形显示面尺寸;dUFPA为UFPA圆形感光面尺寸。
则显示器件与成像器件之间垂轴放大率计算如下:
$$ \beta = \frac{{{d_{{\text{OLED}}}}}}{{{d_{{\text{UFPA}}}}}} = \frac{{{f_{\text{t}}}}}{{{f_{\text{w}}}}} $$ (2) 微光物镜光轴上一物点A,经微光物镜成像后其像点A3也在光轴上(微光物镜图像中心)。在微光物镜前端外挂一个悬挂式红外夜视仪,由于外挂连接圈精度限制,悬挂式红外夜视仪的光轴与微光物镜的光轴夹角为θ。假设物点A与红外物镜的距离为L,与红外物镜光轴的距离为h,则物点A在红外机芯上所成像点A1(此时像点在UFPA上)与红外物镜光轴的距离hw计算如下:
$$ \frac{h}{L} = \frac{{{h_{\text{w}}}}}{{{f_{\text{w}}}}} = {\text{tg}}\theta $$ (3) 式中:hw也是像点A1与红外机芯中心的距离。
在实际装调时OLED所成图像要进行一次倒像。
像点A1在OLED上显示时对应的像点A2距离OLED中心的距离hT计算如下:
$$ {h_{\text{T}}} = {h_{\text{w}}} \times \beta = {h_{\text{w}}} \times \frac{{{f_{\text{t}}}}}{{{f_{\text{w}}}}} $$ (4) 像点A2经投影物镜后以平行光出射,则像点A2的出射光与红外物镜光轴夹角计算如下:
$$ \begin{gathered} {\text{tg}}\omega = {\text{tg}}(\frac{{{h_{\text{T}}}}}{{{f_{\text{t}}}}}) = {\text{tg(}}\frac{{{h_{\text{w}}} \times {f_{\text{t}}}}}{{{f_{\text{t}}} \times {f_{\text{w}}}}}{\text{)}} \hfill \\ \quad \;\,\,\; = {\text{tg}}(\frac{{{h_{\text{w}}}}}{{{f_{\text{w}}}}}) = {\text{tg}}(\frac{h}{L}) = {\text{tg}}\theta \hfill \\ \end{gathered} $$ (5) 即θ=ω。
则悬挂式红外夜视仪的出射光与红外物镜光轴夹角为θ,与微光物镜光轴夹角为0,说明物点A经倾斜的悬挂式红外夜视仪传输后经微光头盔成像的像点与直接经微光头盔所成图像的像点相重合,即悬挂式红外夜视仪悬挂倾斜的角度不影响融合图像的配准精度。成像示意图如图10所示。
3.2 红外物镜与投影物镜光轴一致性分析
在理论条件下红外物镜与投影物镜的光轴没有光轴偏差,此时无穷远目标A发出的平行光线分别经红外物镜、投影物镜后以平行光出射,并以0°视场角入射到微光物镜,则目标A的像点A′在微光物镜焦面中心,与无穷远目标A直接经微光物镜所成图像相重合。
在实际装调时红外物镜与投影物镜具有一定的光轴偏差角θ,此时无穷远目标A发出的平行光线分别经红外物镜、投影物镜后以平行光出射,并以θ视场角入射到微光物镜,则目标A的像点A′与微光物镜焦面中心有Δh的距离偏差,即与无穷远目标A直接经微光物镜所成图像的距离偏差也为Δh。此时进行光学融合时造成图像配准的偏差,易形成重影模糊的融合图像。图11为光轴无偏差时融合成像示意图,图12为光轴有偏差时融合成像示意图。
$$ Δh=f_{\rm II}×{\rm tg}θ $$ (6) 式中:fII为微光物镜的焦距。
微光头盔成像基于真空电子学的原理,所成图像是连续的。人眼在明亮条件下的分辨极限为1′~3′,则微光图像与红外图像配准误差对人眼张角不大于1′~3′时,图像配准效果较好。由于微光头盔为1×系统,即投影物镜以θ偏角投射的光线经微光头盔后也以同样的角度投射到人眼。故悬挂式红外夜视仪的红外物镜光轴与投影物镜光轴偏差不应大于1′~3′。
3.3 红外物镜与投影物镜畸变分析
红外物镜与投影物镜组成的1×系统外挂到微光头盔上,此外挂的精度很低,即投影物镜的中心可能与微光头盔的中心重合,也可能具有一定角度的偏差。微光头盔以视场中心为起点,不同视场位置对应的畸变值也不相同。如果以微光头盔中心视场为基准校正悬挂式红外夜视仪的畸变,使其与微光头盔的畸变相匹配,则悬挂的悬挂式红外夜视仪光轴与微光头盔光轴具有一定角度偏差时,由于畸变值的差异,造成配准精度降低、融合图像模糊。
为了避免此配准误差,则需要红外物镜与投影物镜组成的1×悬挂式红外夜视仪的畸变在各个视场点处畸变相互抵消,即红外物镜与投影物镜组合为一个无畸变的1×望远镜系统,如表2所示。
表 2 红外物镜、投影物镜在相同视场点处的畸变Table 2. Distortion of infrared lens and projection lens at the same field of viewField of view Infrared lens Projection lens 0.1ω −0.01999022% 0.02068782% 0.2ω −0.07997603% 0.08263791% 0.3ω −0.18000125% 0.18550392% 0.4ω −0.32013343% 0.32868725% 0.5ω −0.50045517% 0.51130229% 0.6ω −0.72105160% 0.73212184% 0.7ω −0.98199306% 0.98949535% 0.8ω −1.28331225% 1.28122817% 0.9ω −1.62497467% 1.60440259% 1ω −2.00684062% 1.95510906% 4. 公差分析
4.1 红外物镜公差分析
红外物镜完成设计后为了满足后续的零件加工和装调需要对光学零件和对应的结构件分配一定的公差,对应的公差分配见表3。在进行公差分析时以焦面位移作为补偿(补偿量±0.5 mm)、以几何平均传递函数(MTF)为评价依据、以正态分布概率方式分配实际装配及加工时的公差值,并采用蒙特卡罗分析方法模拟200套加工装配后的虚拟镜头,分析虚拟镜头的MTF变化,依此判断实际镜头的成像效果。
表 3 红外物镜公差Table 3. Tolerance of infrared objective lens partsParameter Tolerance N ±3 aperture ΔN ±0.8 aperture Aspheric error ±0.00006 mm Thickness of optical parts ±0.02 mm Surface tilt ±0.006 mm Air distance ±0.02 mm Element tilt ±0.02 mm Element eccentricity 0.025 mm 如表4所示,通过对200套虚拟镜头传递函数的分析,约有90%的虚拟镜头在中心频率处的传递函数的对比度为0.219,已经能满足设计观察的需要,即表3所分配的公差合理且满足要求。
表 4 红外物镜公差分析结果Table 4. Tolerance analysis results of infrared objective lensLens percentage/% MTF minimum
(Nyquist frequency)90 0.219 80 0.246 50 0.291 20 0.348 10 0.365 4.2 投影物镜公差分析
同上5.1所述,投影物镜完成设计后为了满足后续的零件加工和装调需要对光学零件和对应的结构件分配一定的公差,对应的公差分配见表5。在进行公差分析时以焦面位移作为补偿(补偿量±0.5 mm)、以几何平均传递函数(MTF)为评价依据、以正态分布概率方式分配实际装配及加工时的公差值,并采用蒙特卡罗分析方法模拟200套加工装配后的虚拟镜头,分析虚拟镜头的MTF变化,依此判断实际镜头的成像效果。
表 5 投影物镜零件公差Table 5. Tolerance of projection lens partsParameter Tolerance N ±4 aperture ΔN ±0.5 aperture Thickness of optical part ±0.02 mm Air distance ±0.04 mm Surface tilt ±6′ Element tilt ±6′ Element eccentricity ±0.052 mm nd ±0.0009 vd ±0.95% 如表6所示,通过对200套虚拟镜头传递函数的分析,约有90%的虚拟镜头在40 lp/mm频率处的传递函数的对比度为0.603,已经能满足设计观察的需要,即表5所分配的公差合理且满足要求。
表 6 投影物镜公差分析结果Table 6. Tolerance analysis results of projection lensLens percentage/% MTF minimum(40 lp/mm) 90 0.603 80 0.626 50 0.669 20 0.687 10 0.697 5. 结论
本文介绍了基于微光头盔观察、悬挂式红外夜视仪的设计方案、设计方法及融合图像的配准精度。通过对悬挂式红外夜视仪技术方案的分析,其技术方案成熟可行。针对悬挂式红外夜视仪的特殊使用方式,分析了引起微光与红外图像失配的因素并提出相应的解决或消除措施,以达到比较好的光学式图像融合的效果。通过对悬挂式红外夜视仪的光学仿真,为其他进行夜视仪设计和图像融合研究的相关人员提供参考。
-
图 4 CGL能级性质及CGL性能检测方法 (a)分别为Alq3/Mg: Alq3、Alq3/Yb: Alq3和Alq3-Ca: Alq3界面的能级图[75],(b) CGL器件示意图,(c) CGL器件的C-V分析(@100Hz)[79]
Figure 4. CGL energy level properties and CGL performance testing methods (a) Energy level diagrams for Alq3/Mg: Alq3, Alq3/Yb: Alq3 and Alq3/Ca: Alq3 interfaces, respectively[75], (b) Schematic diagram of a CGL device, (c) C-V analysis of the CGL device (@100 Hz)[79]
图 5 磷光叠层OLED白光器件的光电性能 (a)首个磷光叠层OLED白光器件的发光光谱随电压变化的趋势[61],(b) 器件1和器件2的电流效率/外量子效率与电流密度之间的关系[92]
Figure 5. Electroluminescent properties of phosphorescent tandem OLEDs (a) Trending of luminescence spectrum with voltage in the first phosphorescent tandem OLEDs[61], (b) Relationship between current efficiency/external quantum efficiency and current density for device 1 and device 2[92]
图 6 磷光叠层OLED白光器件的能级、结构及光电性能 (a) 采用Ir(ppy)3及PQIr共掺杂CBP主体材料红绿光以及FlzIr掺杂mCP主体材料蓝绿光的器件材料及能级结构示意图(插图:FlzIr结构式)[64];(b) 采用蓝色磷光掺杂材料FIrpic以及橙色磷光掺杂材料(fbi)2Ir(acac)共掺杂mCP主体材料中的高效叠层有机磷光发光白光器件的功率效率、外量子效率(插图:电压-亮度及电压-电流密度图)[97]以及结构示意图[98]
Figure 6. Energy level, functional layer structure and electroluminescent properties of phosphorescent tandem OLEDs (a) The device material and energy level structure of Ir(ppy)3 and PQIr co-doped CBP main material red-green light and FlzIr doped mCP main material blue-green light are shown (Inset: FlzIr structure formula)[64]; (b) Power efficiency, external quantum efficiency (Inset: voltage-brightness and voltage-current density plots)[97] and structural schematic[98] of highly efficient tandem white OLEDs using FIrpic and (fbi)2Ir(acac) co-doped mCP bodies
图 7 采用TCTA: 三[4-咔唑-9-基苯基]胺(TCTA): 4, 6-双(3, 5-二(3-吡啶)基苯基)-2-甲基嘧啶(B3PYMPM: Ir(ppy)2(tmd)): 二[2-苯喹啉]四甲基庚二酸铱(Ir(mphmq)2(tmd))的橙色磷光EML以及mCP: B3PYMPM: FIrpic的蓝色磷光EML的叠层磷光OLED白光器件结构及优化 (a)功能层结构;(b) 基于经典偶极子模型对橙色磷光OLED器件以及叠层磷光OLED白光器件进行模拟优化[99]
Figure 7. Structure and optimization of tandem white OLEDs' structure with TCTA: B3PYMPM: Ir(ppy)2(tmd): Ir(mphmq)2(tmd) for orange phosphorescent EML and mCP: B3PYMPM: FIrpic for blue phosphorescent EML (a) Functional layer structure; (b) Optimization of devices based on the classical dipole model[99]
图 8 TCTA: Bphen作为蓝色TADF EML以及TAPC: 3P-T2T作为橙色TADF EML的光学分析 (a)归一化发射光谱以及(b)在300 K下不同延迟时间下的归一化时间分辨光致发光光谱[113]
Figure 8. Optical analysis of tandem white OLED with TCTA: Bphen as blue TADF EML and TAPC: 3P-T2T as orange TADF EML (a) Normalized emission spectra and (b) normalized time-resolved photoluminescence spectra with different delay times (@300 K)[113]
图 10 BRU+YRU混合叠层OLED白光器件能级结构及工作机理 (a) 能级结构示意图,以及蓝色TADF和黄色和红色磷光掺杂料的化学结构,(b)工作机制[122]
Figure 10. Energy level structure and working mechanism of BRU+YRU hybrid tandem OLEDs (a) Energy level structure, and structure formula of blue TADF, yellow and red phosphorescent dopants, (b) Working mechanism[122]
表 1 常见叠层OLED器件CGL的组成
Table 1 Composition of CGL for tandem white OLEDs
CGL结构及组成(n║p) Ref. LiF/Ca║Ag [43] LiF/Al║Ag [43] LiF/Al║Au [44] Al║WO3/Au [45] LiF/Al║WO3/Ag/MoO3 [46] LiF/Al║WO3/Au/MoO3 [47-48] LiF/Al║Dipyrazino[2, 3-f: 2', 3'-h]quinoxaline-2, 3, 6, 7, 10, 11-hex(HATCN) [49-50] LiF/Al║MoO3 [51-52] Lithium 8-Hydroxyquinolinolate(Liq)/Al║MoO3 [53] Zinc Phthalocyanine(ZnPc)║C60 [54] Copper(Ⅱ) phthalocyanine(CuPc)║C60 [54] Pentacene║C60 [55] Bathocuproine(BCP): Cs║ITO [25, 56-57] BCP: Cs║V2O5 [58-60] BCP: Li║V2O5 [58, 61] Tris-(8-hydroxyquinoline)aluminum(Alq3): Mg║WO3 [62-63] 4, 7-Diphenyl-1, 10-phenanthroline(BPhen): Li║MoO3 [64] Alq3: Yb║WO3 [65] Alq3: Li║MoO3 [66] Alq3: Mg║WO3 [67] Alq3: Li║HATCN [68] 1, 3, 5-Tris(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene(TPBI): Li║NPB: FeCl3 [69] BPhen: Cs║NPB: 2, 3, 5, 6-Tetrafluoro-7, 7, 8, 8-tetracyanoquinodimethane(F4-TCNQ) [70] TPBI: Cs║4, 4', 4''-Tris(N-(aphthalene-2-yl)-N-phenylamino)triphenylamine(2-TNATA): F4-TCNQ [71] BPhen: Rb2CO3║NPB: ReO3 [72] BPhen: Li║NPB: F4-TCNQ [68] BPhen: Cs2CO3║NPB: MoO3 [73] -
[1] LIU B, XU M, TAO H, et al. Highly efficient red phosphorescent organic light-emitting diodes based on solution processed emissive layer[J]. Journal of Luminescence, 2013, 142: 35-39. DOI: 10.1016/j.jlumin.2013.03.032
[2] XIANG C, KOO W, SO F, et al. A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices[J]. Light: Science & Applications, 2013, 2(6): e74-e74.
[3] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347(6293): 539-541. DOI: 10.1038/347539a0
[4] YANG X, ZHOU G, WONG W Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices[J]. Chemical Society Reviews, 2015, 44(23): 8484-8575. DOI: 10.1039/C5CS00424A
[5] Jou J H, Kumar S, Agrawal A, et al. Approaches for fabricating high efficiency organic light emitting diodes[J]. Journal of Materials Chemistry C, 2015, 3(13): 2974-3002. DOI: 10.1039/C4TC02495H
[6] FAN C, YANG C. Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices[J]. Chemical Society Reviews, 2014, 43(17): 6439-6469. DOI: 10.1039/C4CS00110A
[7] XIAO P, HUANG J, YU Y, et al. Recent developments in tandem white organic light-emitting diodes[J]. Molecules, 2019, 24(1): 151. DOI: 10.3390/molecules24010151
[8] Bernanose A, Comte M, Vouaux P. A new method of emission of light by certain organic compounds[J]. Journal of Chemical Physics, 1953, 50: 64-68.
[9] Pope M, Kallmann H P, Magnante P. Electroluminescence in organic crystals[J]. Journal of Chemical Physics, 1963, 38(8): 2042-2043. DOI: 10.1063/1.1733929
[10] TANG C W, VanSlyke S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 1987, 51(12): 913-915. DOI: 10.1063/1.98799
[11] Madhava Rao M V, Kuin Su Y, HUANG T S, et al. White organic light emitting devices based on multiple emissive nanolayers[J]. Nano-Micro Letters, 2010, 2: 242-246. DOI: 10.1007/BF03353850
[12] Eslamian M. Inorganic and organic solution-processed thin film devices[J]. Nano-Micro Letters, 2017, 9(1): 3. DOI: 10.1007/s40820-016-0106-4
[13] Uoyama H, Goushi K, Shizu K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012, 492(7428): 234-238. DOI: 10.1038/nature11687
[14] LIU B, LI X L, TAO H, et al. Manipulation of exciton distribution for high-performance fluorescent/phosphorescent hybrid white organic light-emitting diodes[J]. Journal of Materials Chemistry C, 2017, 5(31): 7668-7683. DOI: 10.1039/C7TC01477E
[15] Tyan Y S. Organic light-emitting-diode lighting overview[J]. Journal of Photonics for Energy, 2011, 1(1): 011009-011009. DOI: 10.1117/1.3529412
[16] LIU B Q, GAO D Y, WANG J B, et al. Progress of white organic light-emitting diodes[J]. Acta Physico-Chimica Sinica, 2015, 31(10): 1823-1852. DOI: 10.3866/PKU.WHXB201506192
[17] 陈金鑫, 黄孝文. OLED有机电致发光材料与器件[M]. 北京: 清华大学出版社, 2007. CHEN J X, HUANG X W. OLED Organic Electroluminescent Materials and Devices[M]. Beijing: Tsinghua University Press, 2007.
[18] 应根裕, 胡文波, 邱勇. 平板显示技术[M]. 北京: 人民邮电出版社, 2002. YING G Y, HU W B, QIU Y. Flat Panel Display Technology[M]. Beijing: People's Posts and Telecommunications Publishing House, 2002.
[19] 付相杰. 电荷产生层厚度对叠层式白光OLED性能影响的研究[D]. 上海: 上海交通大学, 2015. FU X J. Study of the Effect of Charge-Generating Layer Thickness on the Performance of Stacked White OLEDs[D]. Shanghai: Shanghai Jiao Tong University, 2015.
[20] KO Y W, CHUNG C H, LEE J H, et al. Efficient white organic light emission by single emitting layer[J]. Thin Solid Films, 2003, 426(1-2): 246-249. DOI: 10.1016/S0040-6090(03)00007-5
[21] Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009, 459(7244): 234-238. DOI: 10.1038/nature08003
[22] Kido J. High performance OLEDs for displays and general lighting[J]. SID Symposium Digest of Technical Papers, 2008, 39(1): 931-932. DOI: 10.1889/1.3069828
[23] Burrows P E, Khalfin V, GU G, et al. Control of microcavity effects in full color stacked organic light emitting devices[J]. Applied Physics Letters, 1998, 73(4): 435-437. DOI: 10.1063/1.121891
[24] Nowatari H, Ushikubo T, Ohsawa N, et al. Intermediate connector with suppressed voltage loss for white tandem OLEDS[C]//SID Symposium Digest of Technical Papers, 2009, 40(1): 899-902.
[25] Kido J, Matsumoto T, Nakada T, et al. High efficiency organic el devices having charge generation layers[C]//SID Symposium Digest of Technical Papers, 2003, 34(1): 964-965.
[26] PU Y J, Chiba T, Ideta K, et al. Fabrication of organic light-emitting devices comprising stacked light-emitting units by solution-based processes[J]. Advanced Materials, 2015, 27(8): 1327-1332. DOI: 10.1002/adma.201403973
[27] YU J, YIN Y, LIU W, et al. Effect of the greenish-yellow emission on the color rendering index of white organic light-emitting devices[J]. Organic Electronics, 2014, 15(11): 2817-2821. DOI: 10.1016/j.orgel.2014.08.016
[28] LI X L, OUYANG X, LIU M, et al. Highly efficient single-and multi-emission-layer fluorescent/phosphorescent hybrid white organic light-emitting diodes with 20% external quantum efficiency[J]. Journal of Materials Chemistry C, 2015, 3(35): 9233-9239. DOI: 10.1039/C5TC02050F
[29] Kim D Y, Park J H, Lee J W, et al. Overcoming the fundamental light-extraction efficiency limitations of deep ultraviolet light-emitting diodes by utilizing transverse-magnetic-dominant emission[J]. Light: Science & Applications, 2015, 4(4): e263-e263.
[30] XIAO P, HUANG J, DONG T, et al. Room-temperature fabricated thin-film transistors based on compounds with lanthanum and main family element boron[J]. Molecules, 2018, 23(6): 1373. DOI: 10.3390/molecules23061373
[31] LIU B, XU Z, ZOU J, et al. High-performance hybrid white organic light-emitting diodes employing p-type interlayers[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 240-244. DOI: 10.1016/j.jiec.2014.12.040
[32] CHEN Y, MA D. Organic semiconductor heterojunctions as charge generation layers and their application in tandem organic light-emitting diodes for high power efficiency[J]. Journal of Materials Chemistry, 2012, 22(36): 18718-18734. DOI: 10.1039/c2jm32246c
[33] Hwang S H. Stable blue thermally activated delayed fluorescent organic light-emitting diodes with three times longer lifetime than phosphorescent organic light-emitting diodes[J]. Advanced Materials, 2015, 27(15): 2515-2520. DOI: 10.1002/adma.201500267
[34] SHI Z, LI Y, LI S, et al. Localized surface plasmon enhanced all-inorganic perovskite quantum dot light-emitting diodes based on coaxial core/shell heterojunction architecture[J]. Advanced Functional Materials, 2018, 28(20): 1707031. DOI: 10.1002/adfm.201707031
[35] XIAO P, HUANG J, YU Y, et al. Recent advances of exciplex-based white organic light-emitting diodes[J]. Applied Sciences, 2018, 8(9): 1449. DOI: 10.3390/app8091449
[36] LIU B, XU M, WANG L, et al. Investigation and optimization of each organic layer: a simple but effective approach towards achieving high-efficiency hybrid white organic light-emitting diodes[J]. Organic Electronics, 2014, 15(4): 926-936. DOI: 10.1016/j.orgel.2014.02.005
[37] LIU B, XU M, WANG L, et al. Comprehensive study on the electron transport layer in blue flourescent organic light-emitting diodes[J]. ECS Journal of Solid State Science and Technology, 2013, 2(11): R258-R261. DOI: 10.1149/2.034311jss
[38] LIU B, XU M, WANG L, et al. Simplified hybrid white organic light-emitting diodes with efficiency/efficiency roll-off/color rendering index/color-stability trade-off[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2014, 8(8): 719-723. DOI: 10.1002/pssr.201409179
[39] DU X, TAO S, HUANG Y, et al. Efficient fluorescence/phosphorescence white organic light-emitting diodes with ultra high color stability and mild efficiency roll-off[J]. Applied Physics Letters, 2015, 107(18): 183304. DOI: 10.1063/1.4935457
[40] CHEN Y H, MA D G, SUN H D, et al. Organic semiconductor heterojunctions: electrode-independent charge injectors for high-performance organic light-emitting diodes[J]. Light: Science & Applications, 2016, 5(3): e16042-e16042.
[41] JIANG C, LIU H, LIU B, et al. Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers[J]. Organic Electronics, 2016, 31: 82-89. DOI: 10.1016/j.orgel.2016.01.009
[42] SUN H, CHEN Y, CHEN J, et al. Interconnectors in tandem organic light emitting diodes and their influence on device performance[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 22(1): 154-163.
[43] SUN J X, ZHU X L, PENG H J, et al. Effective intermediate layers for highly efficient stacked organic light-emitting devices[J]. Applied Physics Letters, 2005, 87(9): 093504. DOI: 10.1063/1.2035320
[44] ZHAO D W, SUN X W, JIANG C Y, et al. Efficient tandem organic solar cells with an Al/MoO3 intermediate layer[J]. Applied Physics Letters, 2008, 93(8): 313.
[45] ZHANG H, DAI Y, MA D, et al. High efficiency tandem organic light-emitting devices with Al∕WO3∕Au interconnecting layer[J]. Applied Physics Letters, 2007, 91(12): 123504. DOI: 10.1063/1.2787877
[46] ZHANG H M, Choy W C H, DAI Y F. Independently controllable stacked OLEDs with high efficiency by using semitransparent Al/WO3/Ag intermediate connecting layer[J]. Journal of Physics D: Applied Physics, 2008, 41(10): 105108. DOI: 10.1088/0022-3727/41/10/105108
[47] ZHANG H M, Choy W C H. Real-time color-tunable electroluminescence from stacked organic LEDs using independently addressable middle electrode[J]. IEEE Photonics Technology Letters, 2008, 20(13): 1154-1156. DOI: 10.1109/LPT.2008.925190
[48] ZHANG H M, Choy W C H, DAI Y F, et al. The structural composite effect of Au–WO3–Al interconnecting electrode on performance of each unit in stacked OLEDs[J]. Organic Electronics, 2009, 10(3): 402-407. DOI: 10.1016/j.orgel.2009.01.001
[49] Knauer K A, Najafabadi E, Haske W, et al. Stacked inverted top-emitting green electrophosphorescent organic light-emitting diodes on glass and flexible glass substrates[J]. Organic Electronics, 2013, 14(10): 2418-2423. DOI: 10.1016/j.orgel.2013.06.004
[50] Chiba T, Pu Y J, Miyazaki R, et al. Ultra-high efficiency by multiple emission from stacked organic light-emitting devices[J]. Organic Electronics, 2011, 12(4): 710-715. DOI: 10.1016/j.orgel.2011.01.022
[51] JIAO B, WU Z, YANG Z, et al. Tandem organic light-emitting diodes with an effective nondoped charge-generation unit[J]. Physica Status Solidi (a), 2013, 210(12): 2583-2587. DOI: 10.1002/pssa.201330119
[52] Meyer J, Kröger M, Hamwi S, et al. Charge generation layers comprising transition metal-oxide/organic interfaces: Electronic structure and charge generation mechanism[J]. Applied Physics Letters, 2010, 96(19): 193302. DOI: 10.1063/1.3427430
[53] Sasabe H, Minamoto K, Pu Y J, et al. Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%[J]. Organic Electronics, 2012, 13(11): 2615-2619. DOI: 10.1016/j.orgel.2012.07.019
[54] CHEN Y, CHEN J, MA D, et al. Effect of organic bulk heterojunction as charge generation layer on the performance of tandem organic light-emitting diodes[J]. Journal of Applied Physics, 2011, 110(7): 074504. DOI: 10.1063/1.3644970
[55] CHEN Y, CHEN J, MA D, et al. High power efficiency tandem organic light-emitting diodes based on bulk heterojunction organic bipolar charge generation layer[J]. Applied Physics Letters, 2011, 98(24): 43309-43309.
[56] Burrows P E, Forrest S R, Sibley S P, et al. Color-tunable organic light-emitting devices[J]. Applied Physics Letters, 1996, 69(20): 2959-2961. DOI: 10.1063/1.117743
[57] GU G, Parthasarathy G, TIAN P, et al. Transparent stacked organic light emitting devices. Ⅱ. Device performance and applications to displays[J]. Journal of Applied Physics, 1999, 86(8): 4076-4084. DOI: 10.1063/1.371428
[58] Matsumoto T, Nakada T, Endo J, et al. Multiphoton organic EL device having charge generation layer[J]. SID Symposium Digest of Technical Papers, 2003, 34(1): 979-981. DOI: 10.1889/1.1832449
[59] Tsutsui T, Terai M. Electric field-assisted bipolar charge spouting in organic thin-film diodes[J]. Applied Physics Letters, 2004, 84(3): 440-442. DOI: 10.1063/1.1640470
[60] Terai M, Fujita K, Tsutsui T. Capacitance measurement in organic thin-film device with internal charge separation zone[J]. Japanese Journal of Applied Physics, 2005, 44(8L): L1059-L1062. DOI: 10.1143/JJAP.44.L1059
[61] GUO F, MA D. White organic light-emitting diodes based on tandem structures[J]. Applied Physics Letters, 2005, 87(17): 173510-173510-3. DOI: 10.1063/1.2120898
[62] CHANG C C, CHEN J F, HWANG S W, et al. Highly efficient white organic electroluminescent devices based on tandem architecture[J]. Applied Physics Letters, 2005, 87(25): 253501. DOI: 10.1063/1.2147730
[63] CHANG C C, HWANG S W, CHEN C H, et al. High-efficiency organic electroluminescent device with multiple emitting units[J]. Japanese Journal of Applied Physics, 2004, 43(9A): 6418-6422.
[64] Kanno H, Holmes R J, Sun Y, et al. White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer[J]. Advanced Materials, 2006, 18(3): 339-342. DOI: 10.1002/adma.200501915
[65] CHAN M Y, LAI S L, LAU K M, et al. Influences of connecting unit architecture on the performance of tandem organic light-emitting devices[J]. Advanced Functional Materials, 2007, 17(14): 2509-2514. DOI: 10.1002/adfm.200600642
[66] LIAO L S, Slusarek W K, Hatwar T K, et al. Tandem organic light‐emitting diode using hexaazatriphenylene hexacarbonitrile in the intermediate connector[J]. Advanced Materials, 2008, 20(2): 324-329. DOI: 10.1002/adma.200700454
[67] BAO Q Y, YANG J P, TANG J X, et al. Interfacial electronic structures of WO3-based intermediate connectors in tandem organic light-emitting diodes[J]. Organic Electronics, 2010, 11(9): 1578-1583. DOI: 10.1016/j.orgel.2010.07.009
[68] LIAO L S, Klubek K P. Power efficiency improvement in a tandem organic light-emitting diode[J]. Applied Physics Letters, 2008, 92: 223311. DOI: 10.1063/1.2938269
[69] LIAO L S, Klubek K P, Tang C W. High-efficiency tandem organic light-emitting diodes[J]. Applied Physics Letters, 2004, 84(2): 167-169. DOI: 10.1063/1.1638624
[70] CHO T Y, LIN C L, WU C C. Microcavity two-unit tandem organic light-emitting devices having a high efficiency[J]. Applied Physics Letters, 2006, 88(11): 111106. DOI: 10.1063/1.2185077
[71] Kröger M, Hamwi S, Meyer J, et al. Temperature-independent field-induced charge separation at doped organic/organic interfaces: Experimental modeling of electrical properties[J]. Physical Review B, 2007, 75(23): 235321. DOI: 10.1103/PhysRevB.75.235321
[72] Leem D S, Lee J H, Kim J J, et al. Highly efficient tandem p-i-n organic light-emitting diodes adopting a low temperature evaporated rhenium oxide interconnecting layer[J]. Applied Physics Letters, 2008, 93(10): 103304. DOI: 10.1063/1.2979706
[73] YANG J P, BAO Q Y, XIAO Y, et al. Hybrid intermediate connector for tandem OLEDs with the combination of MoO3-based interlayer and p-type doping[J]. Organic Electronics, 2012, 13(11): 2243-2249. DOI: 10.1016/j.orgel.2012.06.037
[74] CHAN M Y, LAI S L, FUNG M K, et al. Efficient CsF/Yb/Ag cathodes for organic light-emitting devices[J]. Applied Physics Letters, 2003, 82(11): 1784-1786. DOI: 10.1063/1.1561579
[75] TANG J X, FUNG M K, LEE C S, et al. Interface studies of intermediate connectors and their roles in tandem OLEDs[J]. Journal of Materials Chemistry, 2010, 20(13): 2539-2548. DOI: 10.1039/B921699E
[76] TANG J X, LAU K M, LEE C S, et al. Substrate effects on the electronic properties of an organic/organic heterojunction[J]. Applied Physics Letters, 2006, 88(23): 232103. DOI: 10.1063/1.2209212
[77] Parthasarathy G, Shen C, Kahn A, et al. Lithium doping of semiconducting organic charge transport materials[J]. Journal of Applied Physics, 2001, 89(9): 4986-4992. DOI: 10.1063/1.1359161
[78] Garrido J A, Nowy S, Haertl A, et al. The diamond/aqueous electrolyte interface: an impedance investigation[J]. Langmuir, 2008, 24(8): 3897-3904. DOI: 10.1021/la703413y
[79] CHEN Y Y, Tsai C T, HUANG W L, et al. Investigation and optimization of the charge generation layer (CGL) in tandem OLEDs using Taguchi's orthogonal arrays and nondestructive capacitance-voltage (CV) measurements[J]. Synthetic Metals, 2021, 274: 116713. DOI: 10.1016/j.synthmet.2021.116713
[80] LIU J, CHEN Y, QIN D, et al. Improved interconnecting structure for a tandem organic light emitting diode[J]. Semiconductor Science and Technology, 2011, 26(9): 095011. DOI: 10.1088/0268-1242/26/9/095011
[81] Diez C, Reusch T C G, Lang E, et al. Highly stable charge generation layers using caesium phosphate as n-dopants and inserting interlayers[J]. Journal of Applied Physics, 2012, 111(10): 103107. DOI: 10.1063/1.4720064
[82] LIU B, XU M, WANG L, et al. Regulating charges and excitons in simplified hybrid white organic light-emitting diodes: The key role of concentration in single dopant host–guest systems[J]. Organic Electronics, 2014, 15(10): 2616-2623. DOI: 10.1016/j.orgel.2014.07.033
[83] LIU B, ZOU J, SU Y, et al. Hybrid white organic light emitting diodes with low efficiency roll-off, stable color and extreme brightness[J]. Journal of Luminescence, 2014, 151: 161-164. DOI: 10.1016/j.jlumin.2014.02.022
[84] LUO D, XIAO Y, HAO M, et al. Doping-free white organic light-emitting diodes without blue molecular emitter: An unexplored approach to achieve high performance via exciplex emission[J]. Applied Physics Letters, 2017, 110(6): 061105. DOI: 10.1063/1.4975480
[85] CHEN B, LIU B, ZENG J, et al. Efficient bipolar blue AIEgens for high-performance nondoped blue OLEDs and hybrid white OLEDs[J]. Advanced Functional Materials, 2018, 28(40): 1803369. DOI: 10.1002/adfm.201803369
[86] Chapran M, Angioni E, Findlay N J, et al. An ambipolar BODIPY derivative for a white exciplex OLED and cholesteric liquid crystal laser toward multifunctional devices[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4750-4757.
[87] LIU B, Delikanli S, Gao Y, et al. Nanocrystal light-emitting diodes based on type Ⅱ nanoplatelets[J]. Nano Energy, 2018, 47: 115-122. DOI: 10.1016/j.nanoen.2018.02.004
[88] Cekaviciute M, Simokaitiene J, Volyniuk D, et al. Arylfluorenyl-substituted metoxytriphenylamines as deep blue exciplex forming bipolar semiconductors for white and blue organic light emitting diodes[J]. Dyes and Pigments, 2017, 140: 187-202. DOI: 10.1016/j.dyepig.2017.01.023
[89] HUANG Q, Walzer K, Pfeiffer M, et al. Highly efficient top emitting organic light-emitting diodes with organic outcoupling enhancement layers[J]. Applied Physics Letters, 2006, 88(11): 113515. DOI: 10.1063/1.2185468
[90] YOUN W, LEE J, XU M, et al. Corrugated sapphire substrates for organic light-emitting diode light extraction[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 8974-8978.
[91] Yokoyama M, Su S H, Hou C C, et al. Highly efficient white organic light-emitting diodes with a p–i–n tandem structure[J]. Japanese Journal of Applied Physics, 2011, 50(4S): 04DK06. DOI: 10.7567/JJAP.50.04DK06
[92] Ho M H, Chen T M, Yeh P C, et al. Highly efficient p-i-n white organic light emitting devices with tandem structure[J]. Applied Physics Letters, 2007, 91(23): 233507. DOI: 10.1063/1.2822398
[93] CHEN S, ZHAO X, WU Q, et al. Efficient, color-stable flexible white top-emitting organic light-emitting diodes[J]. Organic Electronics, 2013, 14(11): 3037-3045. DOI: 10.1016/j.orgel.2013.09.004
[94] SU S J, Gonmori E, Sasabe H, et al. Highly efficient organic blue‐and white‐light‐emitting devices having a carrier‐and exciton-confining structure for reduced efficiency roll-off[J]. Advanced Materials, 2008, 20(21): 4189-4194.
[95] ZHU L, WU Z, CHEN J, et al. Reduced efficiency roll-off in all-phosphorescent white organic light-emitting diodes with an external quantum efficiency of over 20%[J]. Journal of Materials Chemistry C, 2015, 3(14): 3304-3310. DOI: 10.1039/C5TC00205B
[96] XU L, TANG C W, Rothberg L J. High efficiency phosphorescent white organic light-emitting diodes with an ultra-thin red and green co-doped layer and dual blue emitting layers[J]. Organic Electronics, 2016, 32: 54-58. DOI: 10.1016/j.orgel.2016.02.010
[97] WANG Q, DING J, MA D, et al. Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency: fabrication and emission‐mechanism analysis[J]. Advanced Functional Materials, 2009, 19(1): 84-95. DOI: 10.1002/adfm.200800918
[98] WANG Q, DING J, ZHANG Z, et al. A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer[J]. Journal of Applied Physics, 2009, 105: 076101. DOI: 10.1063/1.3106051
[99] LEE S, SHIN H, KIM J J. High-efficiency orange and tandem white organic light-emitting diodes using phosphorescent dyes with horizontally oriented emitting dipoles[J]. Advanced Materials, 2014, 26(33): 5864-5868. DOI: 10.1002/adma.201400330
[100] XUE K, HAN G, DUAN Y, et al. Doping-free orange and white phosphorescent organic light-emitting diodes with ultra-simply structure and excellent color stability[J]. Organic Electronics, 2015, 18: 84-88. DOI: 10.1016/j.orgel.2015.01.016
[101] XUE K, SHENG R, DUAN Y, et al. Efficient non-doped monochrome and white phosphorescent organic light-emitting diodes based on ultrathin emissive layers[J]. Organic Electronics, 2015, 26: 451-457. DOI: 10.1016/j.orgel.2015.08.017
[102] Fleetham T, LI G, LI J. Phosphorescent Pt (Ⅱ) and Pd (Ⅱ) complexes for efficient, high-color-quality, and stable OLEDs[J]. Advanced Materials, 2017, 29(5): 1601861. DOI: 10.1002/adma.201601861
[103] Coburn C, Jeong C, Forrest S R. Reliable, all-phosphorescent stacked white organic light emitting devices with a high color rendering index[J]. ACS Photonics, 2018, 5(2): 630-635. DOI: 10.1021/acsphotonics.7b01213
[104] ZHANG Y, LEE J, Forrest S R. Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes[J]. Nature Communications, 2014, 5(1): 5008-5015. DOI: 10.1038/ncomms6008
[105] LEE J, Jeong C, Batagoda T, et al. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes[J]. Nature Communications, 2017, 8(1): 15566. DOI: 10.1038/ncomms15566
[106] Rajamalli P, Senthilkumar N, Gandeepan P, et al. A new molecular design based on thermally activated delayed fluorescence for highly efficient organic light emitting diodes[J]. Journal of the American Chemical Society, 2016, 138(2): 628-634. DOI: 10.1021/jacs.5b10950
[107] YANG Z, MAO Z, XIE Z, et al. Recent advances in organic thermally activated delayed fluorescence materials[J]. Chemical Society Reviews, 2017, 46(3): 915-1016. DOI: 10.1039/C6CS00368K
[108] GUO J, LI X L, NIE H, et al. Achieving high-performance nondoped OLEDs with extremely small efficiency roll-off by combining aggregation-induced emission and thermally activated delayed fluorescence[J]. Advanced Functional Materials, 2017, 27(13): 1606458. DOI: 10.1002/adfm.201606458
[109] WU Z, WANG Q, YU L, et al. Managing excitons and charges for high-performance fluorescent white organic light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28780-28788.
[110] WANG J, CHEN J, QIAO X, et al. Simple-structured phosphorescent warm white organic light-emitting diodes with high power efficiency and low efficiency roll-off[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10093-10097.
[111] Goushi K, Yoshida K, Sato K, et al. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion[J]. Nature Photonics, 2012, 6(4): 253-258. DOI: 10.1038/nphoton.2012.31
[112] ZHANG D, CAI M, ZHANG Y, et al. Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability[J]. Materials Horizons, 2016, 3(2): 145-151. DOI: 10.1039/C5MH00258C
[113] ZHAO B, ZHANG T, CHU B, et al. Highly efficient tandem full exciplex orange and warm white OLEDs based on thermally activated delayed fluorescence mechanism[J]. Organic Electronics, 2015, 17: 15-21. DOI: 10.1016/j.orgel.2014.11.014
[114] DUAN Y, SUN F, YANG D, et al. White-light electroluminescent organic devices based on efficient energy harvesting of singlet and triplet excited states using blue-light exciplex[J]. Applied Physics Express, 2014, 7(5): 052102. DOI: 10.7567/APEX.7.052102
[115] Park Y S, KIM K H, KIM J J. Efficient triplet harvesting by fluorescent molecules through exciplexes for high efficiency organic light-emitting diodes[J]. Applied Physics Letters, 2013, 102(15): 153306. DOI: 10.1063/1.4802716
[116] SHI C, SUN N, WU Z, et al. High performance hybrid tandem white organic light-emitting diodes by using a novel intermediate connector[J]. Journal of Materials Chemistry C, 2018, 6(4): 767-772. DOI: 10.1039/C7TC05082H
[117] DU X, ZHAO J, YUAN S, et al. High-performance fluorescent/phosphorescent (F/P) hybrid white OLEDs consisting of a yellowish-green phosphorescent emitter[J]. Journal of Materials Chemistry C, 2016, 4(25): 5907-5913. DOI: 10.1039/C6TC01421F
[118] CHEN Y, YANG D, QIAO X, et al. Novel strategy to improve the efficiency roll-off at high luminance and operational lifetime of hybrid white OLEDs via employing an assistant layer with triplet–triplet annihilation up-conversion characteristics[J]. Journal of Materials Chemistry C, 2020, 8(19): 6577-6586. DOI: 10.1039/D0TC00867B
[119] ZHANG D, DUAN L, LI Y, et al. Highly efficient and color-stable hybrid warm white organic light-emitting diodes using a blue material with thermally activated delayed fluorescence[J]. Journal of Materials Chemistry C, 2014, 2(38): 8191-8197. DOI: 10.1039/C4TC01289E
[120] WU Z, LUO J, SUN N, et al. High-performance hybrid white organic light-emitting diodes with superior efficiency/color rendering index/color stability and low efficiency roll-off based on a blue thermally activated delayed fluorescent emitter[J]. Advanced Functional Materials, 2016, 26(19): 3306-3313. DOI: 10.1002/adfm.201505602
[121] HUANG C, XIE Y, WU S, et al. Thermally activated delayed fluorescence-based tandem OLEDs with very high external quantum efficiency[J]. Physica Status Solidi (a), 2017, 214(10): 1700240. DOI: 10.1002/pssa.201700240
[122] HUANG C, ZHANG Y, ZHOU J, et al. Hybrid tandem white OLED with long lifetime and 150 lm⋅W−1 in luminous efficacy based on TADF blue emitter stabilized with phosphorescent red emitter[J]. Advanced Optical Materials, 2020, 8(18): 2000727. DOI: 10.1002/adom.202000727
-
期刊类型引用(2)
1. 周斌,曹安港. 轻量化双目头戴夜视系统壳体结构可靠性设计. 半导体光电. 2023(03): 444-449 . 百度学术
2. 赵志明,邢鲁艳,王铀. 非接触式伤情探测技术在卫勤领域的应用进展. 创伤外科杂志. 2023(11): 811-815 . 百度学术
其他类型引用(4)