红外增透膜湿热雨林气候环境适应性分析

Environmental Adaptability of Infrared Antireflection Films in Humid Hot Rain Forest

  • 摘要: 随着军用红外光学仪器的发展,对红外光学镀膜元件耐环境性能的要求越来越高。以波段在8~12 μm的Ge、ZnS、ZnSe镀增透膜样品为对象进行红外增透膜湿热雨林气候环境适应性研究。以外观质量、重量、光谱透射比等为评价指标进行环境适应性评价,得出以下结果:经过3年湿热雨林气候环境试验,红外增透膜出现了不同程度损伤,损伤模式主要为变色和脱膜;随着试验时间的延长,变色越来越严重,变色区域越来越大;重量出现先减少后增加的现象,光谱透射比出现少量下降;经过3年的湿热雨林气候环境试验后,红外增透膜均已失效。

     

    Abstract: With the development of military infrared optical instruments, the requirements for the environmental performance of infrared optical coating elements are increasing. Antireflection films coated on Ge, ZnS, and ZnSe in the band of 8 to 12 μm are considered as the objects to study the environmental adaptability of infrared antireflection films to humid hot rain forest climate. The environmental adaptability is evaluated based on appearance, quality, and spectral transmittance, and the results are as follows: after three years of climate and environmental tests in hot and humid rain forest terrain, the infrared antireflection films are damaged, primarily through discoloration and delamination. With the extension of the test time, the discoloration becomes increasingly serious, and the discoloration area increases gradually. Initially, the mass decreases before increasing, and the spectral transmittance decreases slightly. The infrared antireflection films are invalid after three years of climate and environmental tests in hot and humid rain forests.

     

/

返回文章
返回