Development of a Novel Polarization Low-light EMCCD Sensor
-
摘要:
随着图像传感器的发展,图像传感器需要探测更多维度的图像信息。为了解决偏振单元无法在低照度条件下成像的问题,设计了一种新型偏振-微光结构,新型结构单元的引入可以大幅度提高器件在低照度微光条件下的成像质量。完成了偏振-微光结构的工艺制作,同时利用多次高能离子注入及高温退火形成鞍形p型纵向抗晕结构,实现了EMCCD器件的光晕抑制。最后对器件成像性能进行了分析,器件在10-2 lx量级环境照度下成像质量几乎不下降,同时也能够获得足够的偏振信息,实现对目标的偏振探测。此新型偏振-微光结构能使图像传感器在低照度微光条件下完成对目标的多维度信息探测。
Abstract:The development of image sensors has made it necessary to detect more dimensions of image information. Hence, a new polarization low-light structure was designed to solve the problem in which polarization units cannot be imaged under low-illumination conditions. The introduction of this new structural unit significantly improves the imaging quality of the device under low illumination and light conditions. We completed the production process of a polarized low-light structure and utilized multiple high-energy ion implantation and high-temperature annealing to form a saddle-shaped, "p"-shaped, longitudinal antiblooming structure to achieve the halo suppression of EMCCD devices. Finally, the imaging performance of the device was analyzed, and it was found that the imaging quality of the device hardly decreased under low-illumination conditions, while sufficient polarization information was obtained to achieve polarization detection of the target. This new polarized low-light structure enables image sensors to detect multidimensional information from targets under low-illumination and low-light conditions.
-
Keywords:
- EMCCD /
- polarization /
- low light /
- antiblooming
-
低照度成像技术是解决低光照(具体指0.1 lux以下)环境获取视频图像的技术。按照是否包含真空系统,低照度成像器件主要分为三类:第一类是利用外光电效应的真空光电子成像器件,比如基于多碱材料体系的超二代微光像增强器、基于GaAs材料体系的三代微光像增强器;第二类是利用内光电效应的固体成像器件,比如基于硅材料体系的电子倍增CCD(EMCCD)/CMOS(EMCMOS)和低照度CMOS成像器件、基于Ⅲ-Ⅴ族InP/InGaAs材料体系的短波红外InGaAs探测器等;第三类是结合真空和固体器件优势的混合型成像器件,如电子轰击CCD(EBCCD)、电子轰击有源像素CMOS器件的EBAPS。为促进我国低照度成像技术尤其是新一代昼夜通用高灵敏度图像传感器EBAPS的发展,2024年10期,《红外技术》推出了“低照度成像技术”专栏,共收录6篇学术论文,其中2篇文章以EBAPS为主题,1篇综述了EBAPS的研究进展,另1篇提出连通域检测算法筛选高亮噪点区域和异常像素点自适应中值替代的离散系数测试方法并研制了EBAPS闪烁噪声系统;与此形成对照的是1篇微光像增强器的闪烁噪声测试方法,结合了离散系数与Harris角点检测;1篇片上集成偏振单元的EMCCD器件,还有2篇聚焦于低照度图像处理方法。专栏旨在为我国相关科研人员和广大读者提供学术参考,为低照度成像技术的创新发展提供一些新思路和新手段。
最后,感谢各位审稿专家和编辑的辛勤工作。
——王岭雪 -
-
[1] Jeong J, Jung C, Kim T. Using machine learning to improve multi-qubit state discrimination of trapped ions from uncertain EMCCD measurements[J]. Optics Express, 2023, 31(21): 35113-35130. DOI: 10.1364/OE.491301
[2] 陈远金, 张猛蛟, 戴放, 等. 基于EMCCD的单兵综合侦察仪设计及作用距离研究[J]. 红外技术, 2017, 39(5): 399-403. http://hwjs.nvir.cn/article/id/hwjs201705003 CHEN Yuanjin, ZHANG Mengjiao, DAI Fang, et al. The design of the individual integrated reconnaissance instrument based on EMCCD and estimation of function distance[J]. Infrared Technology, 2017, 39(5): 399-403. http://hwjs.nvir.cn/article/id/hwjs201705003
[3] Gural P, Mills T, Mazur M, et al. Development of a very faint meteor detection system based on an EMCCD sensor and matched filter processing[J]. Experimental Astronomy, 2022, 53(3): 1085-1126. DOI: 10.1007/s10686-021-09828-3
[4] LV T, LI J, Arif N, et al. Polarization and external-field enhanced photocatalysis[J]. Matter, 2022, 5(9): 2685-2721. DOI: 10.1016/j.matt.2022.06.004
[5] 那启跃, 姜恺文, 徐建东, 等. 偏振-微光一体化EMCCD相机的设计与开发[J]. 应用光学, 2024, 45(2): 321-328. NA Qiyue, JIANG Kaiwen, XU Jiandong, et al. Design and development of polarization-low level light integrated EMCCD camera[J]. Journal of Applied Optics, 2024, 45(2): 321-328.
[6] WANG Shen, Douglas A Carpenter, Adam DeJager, et al. A 47 million pixel high-performance interline CCD image sensor[J]. IEEE Trans. on Electron Devices, 2016, 63: 174-181 DOI: 10.1109/TED.2015.2447214
[7] LI C, GUO C, HAN L, et al. Low-light image and video enhancement using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(12): 9396-9416.
[8] Douglas A. Carpenter, et al. High performance 7.4-micron interline transfer CCD platform for applied imaging markets[C]//Proc. of SPIE, 2013, 8659(1) : 8
[9] Wilson A E, Parker V A, Feinberg M. Polarization in the contemporary political and media landscape[J]. Current Opinion in Behavioral Sciences, 2020, 34: 223-228. DOI: 10.1016/j.cobeha.2020.07.005
[10] LI Shujun, JIANG Huilin, ZHU Jingping, et al. Development status and key technologies of polarization imaging detection[J]. Chinese Optics, 2013, 6(6): 803-809.
[11] LUO Haibo, ZHANG Junchao, GAI Xingqin, et al. Development status and prospects of polarization imaging technology[J]. Infrared and Laser Engineering, 2022, 51(1): 109-118.
[12] WU Hao, WU Yuan, WU Wei, et al. Study on the digital low-light level night vision device technology[J]. Optoelectronic Technology, 2022, 42(1): 72-78.
[13] WU Xingxing, LIU Jinguo, ZHOU Huaide, et al. Spaceborne low light imaging based on EMCCD and CMOS[J]. Infrared and Laser Engineering, 2016, 45(5): 205-210.
[14] 陈远金, 张猛蛟, 戴放, 等. EMCCD集成偏振-微光一体化成像技术研究[J]. 应用光学, 2020, 41(2): 242-247. CHEN Yuanjin, ZHANG Mengjiao, DAI Fang, et al. Research on polarization-low level integrated imaging technology based on EMCCD[J]. Journal of Applied Optics, 2020, 41(2): 242-247.
[15] 何家维, 何昕, 魏仲慧, 等. 高灵敏度EMCCD导航相机的设计[J]. 光学精密工程, 2018, 26(12): 3019-3027. HE Jiawei, HE Xin, WEI Zhonghui, et al. Design of high-sensitivity EMCCD navigation camera[J]. Optics and Precision Engineering, 2018, 26(12): 3019-3027.