Abstract:
The development of image sensors has made it necessary to detect more dimensions of image information. Hence, a new polarization low-light structure was designed to solve the problem in which polarization units cannot be imaged under low-illumination conditions. The introduction of this new structural unit significantly improves the imaging quality of the device under low illumination and light conditions. We completed the production process of a polarized low-light structure and utilized multiple high-energy ion implantation and high-temperature annealing to form a saddle-shaped, "p"-shaped, longitudinal antiblooming structure to achieve the halo suppression of EMCCD devices. Finally, the imaging performance of the device was analyzed, and it was found that the imaging quality of the device hardly decreased under low-illumination conditions, while sufficient polarization information was obtained to achieve polarization detection of the target. This new polarized low-light structure enables image sensors to detect multidimensional information from targets under low-illumination and low-light conditions.