一种新型偏振-微光EMCCD传感器研制

Development of a Novel Polarization Low-light EMCCD Sensor

  • 摘要: 随着图像传感器的发展,图像传感器需要探测更多维度的图像信息。为了解决偏振单元无法在低照度条件下成像的问题,设计了一种新型偏振-微光结构,新型结构单元的引入可以大幅度提高器件在低照度微光条件下的成像质量。完成了偏振-微光结构的工艺制作,同时利用多次高能离子注入及高温退火形成鞍形p型纵向抗晕结构,实现了EMCCD器件的光晕抑制。最后对器件成像性能进行了分析,器件在10-2 lx量级环境照度下成像质量几乎不下降,同时也能够获得足够的偏振信息,实现对目标的偏振探测。此新型偏振-微光结构能使图像传感器在低照度微光条件下完成对目标的多维度信息探测。

     

    Abstract: The development of image sensors has made it necessary to detect more dimensions of image information. Hence, a new polarization low-light structure was designed to solve the problem in which polarization units cannot be imaged under low-illumination conditions. The introduction of this new structural unit significantly improves the imaging quality of the device under low illumination and light conditions. We completed the production process of a polarized low-light structure and utilized multiple high-energy ion implantation and high-temperature annealing to form a saddle-shaped, "p"-shaped, longitudinal antiblooming structure to achieve the halo suppression of EMCCD devices. Finally, the imaging performance of the device was analyzed, and it was found that the imaging quality of the device hardly decreased under low-illumination conditions, while sufficient polarization information was obtained to achieve polarization detection of the target. This new polarized low-light structure enables image sensors to detect multidimensional information from targets under low-illumination and low-light conditions.

     

/

返回文章
返回