留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的基于单高斯模型的红外异常目标检测算法

宋珊珊 翟旭平

宋珊珊, 翟旭平. 一种改进的基于单高斯模型的红外异常目标检测算法[J]. 红外技术, 2021, 43(9): 885-888,894.
引用本文: 宋珊珊, 翟旭平. 一种改进的基于单高斯模型的红外异常目标检测算法[J]. 红外技术, 2021, 43(9): 885-888,894.
SONG Shanshan, ZHAI Xuping. Improved Infrared Anomaly Target Detection Algorithm Based on Single Gaussian Model[J]. Infrared Technology , 2021, 43(9): 885-888,894.
Citation: SONG Shanshan, ZHAI Xuping. Improved Infrared Anomaly Target Detection Algorithm Based on Single Gaussian Model[J]. Infrared Technology , 2021, 43(9): 885-888,894.

一种改进的基于单高斯模型的红外异常目标检测算法

详细信息
    作者简介:

    宋珊珊(1995-), 女, 硕士研究生, 主要研究红外测温、红外热成像。E-mail:stacysong0207@163.com

    通讯作者:

    翟旭平(1972-), 男, 副教授, 主要研究图像处理、频谱感知。E-mail: zhaixp@shu.edu.cn

  • 中图分类号: TP391

Improved Infrared Anomaly Target Detection Algorithm Based on Single Gaussian Model

  • 摘要: 基于单高斯模型的红外异常目标检测算法是一种常见的能自适应更新背景模型的检测算法。该算法对各个像素的输出响应进行高斯建模,通过设定的阈值确定目标像素点是否为前景像素点,从而达到检测的目的。本文在单高斯模型的基础上,提出一种改进的异常检测算法,该算法利用奈曼-皮尔逊准则选取最佳阈值,克服了根据经验值选取阈值的局限性,为最佳判决阈值的选取奠定了理论基础,使得在虚假率一定的情况下,检测概率达到最高。实验证明,将常见的经验阈值与本文确定阈值进行比较,本文算法确定的阈值检测效果更佳。
  • 图  1  检测判决结果示意图

    Figure  1.  Schematic diagram of the detection judgment result

    图  2  使用不同阈值判决后的图像

    Figure  2.  Images after using different thresholds

    表  1  二元信号检测判决结果

    Table  1.   Judgment results of binary signal detection

    Judgment
    Assumption
    H0 H1
    H0 (H0/H0) (H0/H1)
    H1 (H1/H0) (H1/H1)
    下载: 导出CSV

    表  2  不同阈值的检测判决结果

    Table  2.   Detection and judgment results of different thresholds

    Threshold TP TN FP FN A MA FA
    Threshold1 93 3259 1766 2 0.6547 0.0211 0.9499
    Threshold2 88 4511 514 7 0.8982 0.0737 0.8538
    Threshold3 75 4959 80 20 0.9805 0.2105 0.5161
    下载: 导出CSV
  • [1] 庞文正. 红外热成像在民用领域应用不断拓展市场前景不可限量[J]. 中国安防, 2020, 15(3): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGAF202003013.htm

    PANG Wenzheng. The application of infrared thermal imaging in the civil field continues to expand and the market prospects are unlimited[J]. China Security, 2020, 15(3): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGAF202003013.htm
    [2] 刘成, 鲍可进. 基于图像处理的嵌入式自动报警系统[J]. 计算机工程与设计, 2007, 28(17): 4198-4199, 4269. doi:  10.3969/j.issn.1000-7024.2007.17.045

    LIU Cheng, BAO Kejin. Embedded automatic alarm system based on image processing[J]. Computer Engineering and Design, 2007, 28(17): 4198-4199, 4269. doi:  10.3969/j.issn.1000-7024.2007.17.045
    [3] 谈新权, 江柳, 刘伟宏. 红外热成像报警方法研究[J]. 激光与红外, 1997, 27(5): 286-291. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW199705012.htm

    TAN Xinquan, JIANG Liu, LIU Weihong. Research on infrared thermal imaging alarm method[J]. Laser and Infrared, 1997, 27(5): 286-291. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW199705012.htm
    [4] 许彬, 郑链, 王永学, 等. 红外序列图像小目标检测与跟踪技术综述[J]. 红外与激光工程, 2004, 33(5): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200405011.htm

    XU Bin, ZHENG Lian, WANG Yongxue, et al. Overview of small target detection and tracking technology in infrared serial images[J]. Infrared and Laser Engineering, 2004, 33(5): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200405011.htm
    [5] LI H, WEI Y T, LI L Q, et al. Infrared moving target detection and tracking based on tensor locality preserving projection[J]. Infrared Physics & Technology, 2010, 53(2): 77-83. http://www.onacademic.com/detail/journal_1000034076425010_63d8.html
    [6] Sengar S S, Mukhopadhyay S. Moving object detection using statistical background subtraction in wavelet compressed domain[J]. Multimedia Tools & Applications, 2019, 12(12): 1-22. doi:  10.1007/s11042-019-08506-z?utm_medium=affiliate&utm_content=meta
    [7] 张晓露, 李玲, 辛云宏. 基于小波变换的自适应多模红外小目标检测[J]. 激光与红外, 2017, 47(5): 647-652. doi:  10.3969/j.issn.1001-5078.2017.05.023

    ZHANG Xiaolu, LI Ling, XIN Yunhong. Adaptive multi-mode infrared small target detection based on wavelet transform[J]. Laser and Infrared, 2017, 47(5): 647-652. doi:  10.3969/j.issn.1001-5078.2017.05.023
    [8] 秦剑, 陈钱, 钱惟贤. 基于光流估计和自适应背景抑制的弱小目标检测[J]. 光子学报, 2011, 40(3): 476-482. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201103032.htm

    QIN Jian, CHEN Qian, QIAN Weixian. Dim target detection based on optical flow estimation and adaptive background suppression[J]. Acta Photonica Sinica, 2011, 40(3): 476-482. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201103032.htm
    [9] 詹令明, 李翠芸, 姬红兵. 基于显著图的红外弱小目标动态规划检测前跟踪算法[J]. 计算机辅助设计与图形学学报, 2019, 31(7): 1061-1066. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201907001.htm

    ZHAN Lingming, LI Cuiyun, JI Hongbing. Infrared dim target tracking algorithm based on saliency map dynamic programming before detection[J]. Journal of Computer Aided Design and Graphics, 2019, 31(7): 1061-1066. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201907001.htm
    [10] 刘源, 李庆, 梁艳菊. 基于FPGA的红外目标自动检测系统[J]. 红外技术, 2019, 41(6): 521-526. http://hwjs.nvir.cn/article/id/hwjs201906005

    LIU Yuan, LI Qing, LIANG Yanju. Infrared target automatic detection system based on FPGA[J]. Infrared Technology, 2019, 41(6): 521-526. http://hwjs.nvir.cn/article/id/hwjs201906005
    [11] 徐鹏, 任波. 基于单高斯模型的森林火灾烟图像目标检测[J]. 计算机与现代化, 2009(2): 18-20. doi:  10.3969/j.issn.1006-2475.2009.02.006

    XU Peng, REN Bo. Forest fire smoke image target detection based on single Gaussian model[J]. Computer and Modernization, 2009(2): 18-20. doi:  10.3969/j.issn.1006-2475.2009.02.006
    [12] 朱华生, 叶军. 基于改进高斯模型的车流量检测算法[J]. 激光与红外, 2013, 43(10): 1180-1183. doi:  10.3969/j.issn.1001-5078.2013.10.22

    ZHU Huasheng, YE Jun. Vehicle flow detection algorithm based on improved Gaussian model[J]. Laser & Infrared, 2013, 43(10): 1180-1183. doi:  10.3969/j.issn.1001-5078.2013.10.22
    [13] 喻旭勇, 王直杰. 一种基于改进单高斯模型的运动目标提取方法[J]. 科学技术与工程, 2013, 13(13): 3609-3613. doi:  10.3969/j.issn.1671-1815.2013.13.017

    YU Xuyong, WANG Zhijie. A moving target extraction method based on improved single Gaussian model[J]. Science Technology and Engineering, 2013, 13(13): 3609-3613. doi:  10.3969/j.issn.1671-1815.2013.13.017
    [14] 王小平, 张丽杰, 常佶. 基于单高斯背景模型运动目标检测方法的改进[J]. 计算机工程与应用, 2009, 45(21): 122-124. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG200921035.htm

    WANG Xiaoping, ZHANG Lijie, CHANG Ji. Improvement of moving target detection method based on single Gaussian background model[J]. Computer Engineering and Applications, 2009, 45(21): 122-124. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG200921035.htm
    [15] 吴一全, 孟天亮, 吴诗婳. 图像阈值分割方法研究进展20年(1994—2014)[J]. 数据采集与处理, 2015, 30(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201501001.htm

    WU Yiquan, MENG Tianliang, WU Shihua. Research progress of image threshold segmentation methods for 20 years (1994-2014)[J]. Data Acquisition and Processing, 2015, 30(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201501001.htm
    [16] 李文杰, 闫世强, 胡磊, 等. 红外预警卫星系统虚警抑制技术综述[J]. 红外技术, 2020, 42(2): 115-120. http://hwjs.nvir.cn/article/id/hwjs202002002

    LI Wenjie, YAN Shiqiang, Hu Lei, et al. Overview of false alarm suppression technology of infrared early warning satellite system[J]. Infrared Technology, 2020, 42(2): 115-120. http://hwjs.nvir.cn/article/id/hwjs202002002
    [17] 鞠德航, 林可祥, 陈捷. 信号检测理论导论[M]. 北京: 科学出版社, 1997.

    JU Dehang, LIN Kexiang, CHEN Jie. Introduction to Signal Detection Theory[M]. Beijing: Science Press, 1997.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  22
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-23
  • 修回日期:  2021-01-12
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回

    《红外技术》网站维护通知

    尊敬的专家、作者、读者:

    国庆假期期间(10月1日-3日)因设备维护,《红外技术》网站(hwjs.nvir.cn)将于2021年9月30日18:00-10月4日13:00关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    《红外技术》编辑部

    2021年9月29日