快速反射镜自适应反演PID复合控制系统设计

艾志伟, 张慕帆, 朱华, 嵇建波, 柏元忠

艾志伟, 张慕帆, 朱华, 嵇建波, 柏元忠. 快速反射镜自适应反演PID复合控制系统设计[J]. 红外技术, 2024, 46(2): 144-149.
引用本文: 艾志伟, 张慕帆, 朱华, 嵇建波, 柏元忠. 快速反射镜自适应反演PID复合控制系统设计[J]. 红外技术, 2024, 46(2): 144-149.
AI Zhiwei, ZHANG Mufan, ZHU Hua, JI Jianbo, BAI Yuanzhong. Design of Adaptive Inversion Proportional-Integral-Derivative Control System for Fast-Steering Mirror[J]. Infrared Technology , 2024, 46(2): 144-149.
Citation: AI Zhiwei, ZHANG Mufan, ZHU Hua, JI Jianbo, BAI Yuanzhong. Design of Adaptive Inversion Proportional-Integral-Derivative Control System for Fast-Steering Mirror[J]. Infrared Technology , 2024, 46(2): 144-149.

快速反射镜自适应反演PID复合控制系统设计

基金项目: 

桂林市科技计划项目 20210210-2

广西大学生创新创业计划项目 S202311825095

详细信息
    作者简介:

    艾志伟(1992-),男,硕士,讲师,主要从事光电跟踪系统方面的研究。E-mail:aizhiwei752@163.com

  • 中图分类号: TP273

Design of Adaptive Inversion Proportional-Integral-Derivative Control System for Fast-Steering Mirror

  • 摘要: 为了提高复合轴系统的光束跟踪性能,必须考虑不可测扰动对快速反射镜系统的影响。针对可测量扰动,设计了自适应反演前馈控制算法,并由此得到启发,设计了用于抑制不可测量扰动的自适应反演PID(proportional-integral-derivative)控制系统,用自适应算法提高系统稳态精度以及对不同扰动的适应性,用PID控制器修正系统的误差信号改善系统动态性能。仿真结果表明,相较于PID控制算法,自适应反演PID复合控制系统的误差均方差值下降了34.76%,相较于自适应控制算法,自适应反演PID控制系统的误差均方差值下降了13.3%,自适应反演PID复合控制系统的稳态精度相比经典PID控制和自适应反演控制系统均得到了明显的提升,采用复合算法时上升时间相较自适应算法减少了48.9%,超调量相较经典PID算法减少了80.5%,系统动态性能得到较大改善。
    Abstract: The influence of unmeasurable disturbances in a fast-steering mirror system must be considered to improve the beam-tracking performance of a compound-axis system. For measurable disturbances, an adaptive feedforward control algorithm is designed. Inspired by this, an adaptive inversion proportional-integral-derivative(PID) control system for suppressing unmeasurable disturbances was designed. An adaptive algorithm was used to improve the steady-state accuracy of the system and the adaptability to different disturbances. In addition, a PID controller was used to further correct the error signals and improve the dynamic performance of the system. The simulation results show that compared with that of the PID control algorithm, the mean square difference of the error of the adaptive inversion PID control system decreases by 34.76%. Compared with that of the adaptive control algorithm, the mean square difference of the error of the adaptive inversion PID control system decreases by 13.3%. The accuracy of the compound control system significantly improved compared with that of the classical PID and adaptive control systems. When using the compound algorithm, the rise time decreases by 48.9% compared with the adaptive algorithm, and the overshoot decreases by 80.5% compared with the classical PID algorithm. Overall, the dynamic performance of the system improved significantly.
  • 图  1   可测扰动自适应前馈反演控制系统框图

    Figure  1.   Block diagram of adaptive feedforward inversion control system for measurable disturbance system

    图  2   不可测扰动自适应反演控制框图

    Figure  2.   Block diagram of adaptive inversion control for unmeasurable disturbance system

    图  3   不可测扰动自适应反演PID控制系统框图

    Figure  3.   Block diagram of adaptive inversion PID control for unmeasurable disturbance system

    图  4   可测扰动自适应反演控制系统输出响应曲线

    Figure  4.   Output response curve of adaptive inversion control for measurable disturbance system

    图  5   三种控制算法的阶跃响应曲线

    Figure  5.   Output comparison of three control methods

    图  6   不可测扰动作用下3种系统的阶跃响应曲线

    Figure  6.   Step response of three control methods of unmeasurable disturbance system

    图  7   三种控制算法的误差平方曲线

    Figure  7.   Square error curves of three control methods

    图  8   不同频率扰动作用下误差曲线对比

    Figure  8.   Comparison of error signals of control systems under different frequency disturbances

  • [1] 马佳光. 捕获跟踪与瞄准系统的基本技术问题[J]. 光电工程, 1989(3): 1-42.

    MA Jiaguang. The basic techno1ogies of the acquisition, tracking and pointing systems[J]. Opto-Electronic Engineering, 1989(3): 1-42.

    [2]

    ABID M, YU J, XIE Y, et al. Conceptual design, modeling and compliance characterization of a novel 2-DOF rotational pointing mechanism for fast steering mirror[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3564-74. DOI: 10.1016/j.cja.2020.03.032

    [3] 丁科, 黄永梅, 马佳光, 等. 抑制光束抖动的快速反射镜复合控制[J]. 光学精密工程, 2011, 19(9): 1991-1998.

    DING Ke, HUANG Yongmei, MA Jiaguang, et al. Composite control of fast steering mirror for beam jitter[J]. Optics and Precision Engineering, 2011, 19(9): 1991-1998.

    [4] 丁科, 黄永梅, 马佳光, 等. 快速反射镜的误差自适应前馈复合控制[J]. 中国激光, 2011, 38(7): 184-193.

    DING Ke, HUANG Yongmei, MA Jiaguang, et al. Error adaptive feedforward composite control of fast-steering-mirror[J]. Chinese Journal of Lasers, 2011, 38(7): 184-193.

    [5]

    DENG C, MAO Y, REN G. MEMS inertial sensors-based multi-loop control enhanced by disturbance observation and compensation for fast steering mirror system[J]. Sensors, 2016, 16(11): 1-12. DOI: 10.1109/JSEN.2016.2552318

    [6]

    TIAN Jing, YANG Wenshu, PENG Zhenming, et al. Application of MEMS accelerometers and gyroscopes in fast steering mirror control systems[J]. Sensors, 2016, 16(4): 440. DOI: 10.3390/s16040440

    [7] 凡木文, 黄林海, 李梅, 等. 抑制光束抖动的压电倾斜镜高带宽控制[J]. 物理学报, 2016, 65(2): 158-165.

    FAN Muwen, HUANG Linhai, LI Mei, et al. High-bandwidth control of piezoelectric steering mirror for suppression of laser beam jitter[J]. Acta Physica Sinica, 2016, 65(2): 158-165.

    [8] 钱鹏俊, 廖文和, 陆正亮, 等. 质量矩固体推进微纳卫星自适应反演控制律设计[J]. 推进技术, 2022, 43(1): 9.

    QIAN Pengjun, LIAO Wenhe, LU Zhengliang, et al. Design of adaptive backstepping control for moving mass micro-nano satellite with solid rocket[J]. Motor Journal of Propulsion Technology, 2022, 43(1): 9.

    [9] 艾志伟, 嵇建波, 王鹏举, 等. 两轴柔性支承快速反射镜结构控制一体化设计[J]. 红外与激光工程, 2020, 49(7): 8.

    AI Zhiwei, JI Jianbo, WANG Pengju, et al. Integrative design of structure control for two-axis fast steering mirror with flexible support[J]. Infrared and Laser Engineering, 2020, 49(7): 8.

    [10] 王昱棠, 张宇鹏, 徐钰蕾. 压电陶瓷驱动快速反射镜双闭环控制[J]. 仪器仪表学报, 2014(S1): 5.

    WANG Yutang, ZHANG Yupeng, XU Yulei. Dual-loop control strategy for fast-steering mirror driven by PZT[J]. Chinese Journal of Scientific Instrument, 2014(S1): 5.

    [11]

    LU Yafei, FAN Dapeng, ZHANG Zhiyong. Theoretical and experimental determination of bandwidth for a two-axis fast steering mirror[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(16): 2443-2449. DOI: 10.1016/j.ijleo.2012.08.023

    [12]

    ZHONG J, NISHIDA R, SHINSHI T. Design and precision tracking control of a high-bandwidth fast steering mirror for laser beam machining[J]. Precision Engineering, 2022, 73: 128-139. DOI: 10.1016/j.precisioneng.2021.09.003

  • 期刊类型引用(0)

    其他类型引用(2)

图(8)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  49
  • PDF下载量:  28
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-07-10
  • 修回日期:  2022-07-27
  • 刊出日期:  2024-02-19

目录

    /

    返回文章
    返回