快速反射镜自适应反演PID复合控制系统设计

艾志伟, 张慕帆, 朱华, 嵇建波, 柏元忠

艾志伟, 张慕帆, 朱华, 嵇建波, 柏元忠. 快速反射镜自适应反演PID复合控制系统设计[J]. 红外技术, 2024, 46(2): 144-149.
引用本文: 艾志伟, 张慕帆, 朱华, 嵇建波, 柏元忠. 快速反射镜自适应反演PID复合控制系统设计[J]. 红外技术, 2024, 46(2): 144-149.
AI Zhiwei, ZHANG Mufan, ZHU Hua, JI Jianbo, BAI Yuanzhong. Design of Adaptive Inversion Proportional-Integral-Derivative Control System for Fast-Steering Mirror[J]. Infrared Technology , 2024, 46(2): 144-149.
Citation: AI Zhiwei, ZHANG Mufan, ZHU Hua, JI Jianbo, BAI Yuanzhong. Design of Adaptive Inversion Proportional-Integral-Derivative Control System for Fast-Steering Mirror[J]. Infrared Technology , 2024, 46(2): 144-149.

快速反射镜自适应反演PID复合控制系统设计

基金项目: 

桂林市科技计划项目 20210210-2

广西大学生创新创业计划项目 S202311825095

详细信息
    作者简介:

    艾志伟(1992-),男,硕士,讲师,主要从事光电跟踪系统方面的研究。E-mail:aizhiwei752@163.com

  • 中图分类号: TP273

Design of Adaptive Inversion Proportional-Integral-Derivative Control System for Fast-Steering Mirror

  • 摘要: 为了提高复合轴系统的光束跟踪性能,必须考虑不可测扰动对快速反射镜系统的影响。针对可测量扰动,设计了自适应反演前馈控制算法,并由此得到启发,设计了用于抑制不可测量扰动的自适应反演PID(proportional-integral-derivative)控制系统,用自适应算法提高系统稳态精度以及对不同扰动的适应性,用PID控制器修正系统的误差信号改善系统动态性能。仿真结果表明,相较于PID控制算法,自适应反演PID复合控制系统的误差均方差值下降了34.76%,相较于自适应控制算法,自适应反演PID控制系统的误差均方差值下降了13.3%,自适应反演PID复合控制系统的稳态精度相比经典PID控制和自适应反演控制系统均得到了明显的提升,采用复合算法时上升时间相较自适应算法减少了48.9%,超调量相较经典PID算法减少了80.5%,系统动态性能得到较大改善。
    Abstract: The influence of unmeasurable disturbances in a fast-steering mirror system must be considered to improve the beam-tracking performance of a compound-axis system. For measurable disturbances, an adaptive feedforward control algorithm is designed. Inspired by this, an adaptive inversion proportional-integral-derivative(PID) control system for suppressing unmeasurable disturbances was designed. An adaptive algorithm was used to improve the steady-state accuracy of the system and the adaptability to different disturbances. In addition, a PID controller was used to further correct the error signals and improve the dynamic performance of the system. The simulation results show that compared with that of the PID control algorithm, the mean square difference of the error of the adaptive inversion PID control system decreases by 34.76%. Compared with that of the adaptive control algorithm, the mean square difference of the error of the adaptive inversion PID control system decreases by 13.3%. The accuracy of the compound control system significantly improved compared with that of the classical PID and adaptive control systems. When using the compound algorithm, the rise time decreases by 48.9% compared with the adaptive algorithm, and the overshoot decreases by 80.5% compared with the classical PID algorithm. Overall, the dynamic performance of the system improved significantly.
  • 快速反射镜(fast steering mirror, FSM)是一种通过控制反射镜的偏转角度调整光束传播方向,实现收发两端的光束精确对准的装置。由于这类装置具有响应速度快、控制精度高等优点,快速反射镜已经被广泛应用于自由空间通信、扫描共焦显微镜、大型天文望远镜等光学系统中[1-3],成为光束指向控制系统中应用最广泛的核心器件。

    快速反射镜的机械结构主要由驱动元件、支撑结构和负载组成[4]。驱动元件包括音圈电机(voice coil motor, VCM)和压电驱动器(piezoelectric actuators, PEAs),由音圈电机驱动的快速反射镜具有高驱动行程、高加速度等优势,然而音圈电机输出驱动力有限,因此为了保证足够的偏摆范围,快速反射镜的支撑结构偏摆刚度不能太大,这就造成其谐振频率相对较低[5]。例如,2020年Tadahiko Shinshi等人提出了一种由音圈电机驱动的快速反射镜,其尖端倾斜范围可达±20 mrad,轴向带宽仅为200 Hz[6]

    压电驱动器具有高驱动力、高频响、高分辨率等优势,然而受到输出位移量小(仅为驱动器自身长度的0.1%~0.15%)以及不能承受侧向或拉伸载荷等缺点的限制[7]。而快速反射镜的支撑结构——柔性机构具有无需装配、无摩擦、响应速度快等优点,将柔性机构作为预紧和位移放大机构与压电驱动器组成压电驱动快速反射镜[8-9]。此类系统兼具压电陶瓷与柔性机构的优点,因而被广泛地应用于精确激光束控制等超精密系统。2010年向思桦等人采用单级桥式放大构型设计的快速反射镜具有较高一阶固有频率,但放大比较小,导致快速反射镜偏转角度较小[10]。2015年袁刚等人采用单级桥式放大构型设计的快速反射镜具有较大的偏转角,然而由于该柔性铰链的刚度较小,导致构型固有频率较低,仅为180.4 Hz[11]。2018年邵恕宝等人提出的压电驱动快反镜采用一级杆式构型可实现两轴±7 mrad的倾斜范围,同时两轴带宽高于810 Hz[12]。2019年Kim等人和2021年谢永等人均采用两级杠杆放大机构,保证了构型有较大的放大比,但其频响较低[13-14]

    现有快速反射镜柔性机构通常采用多级单一放大构型以增加放大比。然而,由于缺乏针对不同级数、不同构型之间性能特征的定量分析,设计过程缺乏选型依据[15-16],导致现有快速反射镜普遍存在偏转范围小、扫描频率低的共性问题。由于快速反射镜在运动时,会受到一些来自平台或者外界环境的干扰,导致快速反射镜的视轴稳定性下降,因此在控制快速反射镜运动需要能够对多源干扰准确估计和有效抑制的控制方法[17-18]。同时,压电陶瓷存在迟滞、蠕变特性,这种由驱动元件材料引起的非线性特性增加了控制方法设计的复杂程度[14]

    本研究针对柔性机构构型级数与放大比之间的关系开展了定量分析,得出了嵌套级数的选择依据。针对不同构型方案的固有频率和放大比进行仿真分析,得出了三级混合构型的设计方案。开展了柔性机构离散化处理,构建了柔性机构的通用动力刚度模型,得出柔性机构结构参数与快速反射镜偏转角度的映射关系。在此基础上,对快速反射镜柔性机构关键尺寸参数进行优化,以快速反射镜偏转角度最大化为优化目标,得到优化参数与偏转角度及固有频率的关系。为快速反射镜的设计以及柔性铰链等单元的参数优化提供了理论依据。与国内外同类研究相比,该机构可以在保证较高一阶固有频率的基础上实现100 mrad机械偏转角度。

    快速反射镜通过PEAs驱动柔性机构引导平面反射镜快速摆动实现光束指向的精准调控,其工作原理如图 1所示。图 1(b)表示在驱动力±Fx和±Fy等距分布于反射镜底部,图 1(a)表示在驱动力作用下反射镜偏转α(即机械偏转角度),反射光线则由l1偏转至l2,偏转角为β(即光学偏转角度)。

    图  1  快速反射镜工作原理示意图
    Figure  1.  The schematic diagram of the fast steering mirror

    对快速反射镜输出偏转角和带宽影响最大的部分是支撑结构(柔性机构),其主要常见材料有钛合金(TC4)、镁合金(AZ91)、铝合金(AL7075)、低锰弹簧钢(65Mn)等。本文以上述材料为选材目标,以一级桥式放大机构为例,使用ANSYS Workbench软件对构型进行分析,设置柔性机构材料如表 1所示,逐一比较快速反射镜采用这些材料时的各项参数。

    表  1  柔性机构材料各项参数
    Table  1.  Material parameters of flexible mechanism
    Material Elastic modulus/GPa Ultimate strength /MPa Yield limit /MPa Magnificationratio (R) Natural frequency/Hz
    Titanium alloy(TC4) 117 902 824 1.943 739.66
    Magnesium alloy(AZ91) 45 230 160 1.943 810.62
    Aluminium alloy(AL7075) 71 572 503 1.944 813.73
    Low manganese spring steel(65Mn) 197 980 785 1.945 827.33
    下载: 导出CSV 
    | 显示表格

    表 1所示,具有最大放大比的材料是低锰弹簧钢(65Mn),但是低锰弹簧钢加工前需要热处理,同时该材料在淬火后容易产生裂纹;钛合金(TC4)具有较大弹性模量,但是分析结果表明其固有频率较低;镁合金(AZ91)的弹性模量、强度极限和屈服极限这3项参数较低,不适合本文的柔性放大机构;与其它材料相比,铝合金具有高放大比、高带宽、高弹性模量和无需热处理的优势,因此本文采用铝合金(AL7075)加工快速反射镜支撑结构。

    柔性铰链主要分为杆式构型和桥式构型,其中杆式构型的放大比受杠杆尺寸影响较大,单级杆式构型在保证其放大比前提下难以兼顾杠杆尺寸。与杠杆机构相比,桥式机构具有结构紧凑且无寄生位移的优势。由于单级构型可提供的放大比有限,在快速反射镜柔性机构设计过程中通常采用多级构型。然而,过多放大构型的多级嵌套组合会导致结构尺寸和输入刚度的增大,因此在设计过程中需要首先考虑嵌套级数和构型方式。

    首先,开展柔性机构的级数分析。为保证结构紧凑,初步设定桥式构型与杆式构型的每一级构型的主要尺寸如表 2所示,其构型如图 2所示。

    表  2  各级构型的主要参数
    Table  2.  The main parameters of each configuration
    Parameter Lever type configuration Bridge type configuration
    θ - 13.5
    L/mm 15 18
    H/mm 5 5
    t/mm 0.8 0.8
    h/mm 2.5 -
    下载: 导出CSV 
    | 显示表格
    图  2  柔性机构构型
    Figure  2.  Flexible mechanism configuration

    PEAs驱动多级柔性机构过程中,动力源于PEAs逆压电作用产生的驱动力,在该驱动力作用下第一级机构(由PEAs直接驱动的柔性铰链)发生弹性形变输出位移,该位移使后一级机构产生弹性形变并逐级向后驱动。可以发现,前一级机构的输出力是后一级机构的驱动力,而前一级机构的输出位移受到后一级机构的阻滞。因此,多级柔性机构是单向耦合的。构建柔性机构阻滞模型需要完成精确的力学建模和复杂的积分运算,工作量巨大。因此在确定柔性机构级数时通常依赖于设计者的经验,缺乏级数与柔性机构输出性能之间的定量分析。如图 3所示,本文基于有限元理论,针对桥式构型和杆式构型级数与柔性机构输出放大比之间关系分别开展了定量分析。

    图  3  两类构型多级放大比对比
    Figure  3.  Comparison of multi-stage amplification ratios of two types of configurations

    图 3所示,一级桥式构型放大比与一级杆式构型放大比较为接近(分别为3.9、3.5);在两级构型中,桥式构型放大比到达峰值(8.6),杆式构型放大比(11.0)优于桥式构型。在三级构型中,桥式构型放大比产生较大衰减,杆式构型放大比到达峰值(12.3);在四级及以上构型中,桥式构型和杆式构型放大比均出现持续衰减。因此,采用柔性机构嵌套级数为三级。

    针对三级柔性机构四种构型方案的固有频率和放大比进行分析,分析结果如图 4所示。图 4(a)为三级杆式构型,该结构具有较高的固有频率和放大比。然而,纯杆式构型很难保证柔性机构的紧凑性。图 4(b)为一级桥式构型与两级杆式构型组合,其固有频率和放大比均低于方案(a)。图 4(c)为两级桥式构型与一级杆式构型相结合的设计方案,该方案为压电驱动器预留足够的安装空间且具有20.1倍的位移放大比和较高的一阶固有频率。图 4(d)为三级桥式构型,其一阶固有频率和放大比都很低。因此,本文采用了两级桥式构型与一级杆式构型相结合的设计方案。

    图  4  构型组合比较
    Figure  4.  Comparison of configuration combinations

    快速反射镜整体机构如图 5所示,在两级桥式放大机构之间放置PEAs,由PEAs直接输出位移,两级桥式放大构型与杆式构型相连,经杆式机构放大,在光学反射镜底部实现输出。由于快速反射镜驱动组件在装置底部通过柔性铰链相连,所以当快速反射镜发生偏转时,可能存在交叉耦合现象。采取如图 5所示沿圆周方向均布柔性机构的方式减小交叉耦合现象。

    图  5  快速反射镜结构
    Figure  5.  The overall structure of the fast steering mirror

    图 5所示,三级混合柔性机构通过柔性直梁与反射镜底座相连,组成一个多自由度复杂机构。针对这类复杂机构的动态响应分析,首先需要对机构进行离散化处理,建立每个柔性铰链和刚体的动力学模型,最后建立整个机构的动力学模型。

    将构型离散化后可知构型由柔性直梁、集中质量和刚体组成,进一步将构型的柔性直梁进行顺序编号从(1)~(44),固定端编号为(0),而所有的柔性直梁是由1到25个节点连接,其中节点3、4、9、10、15、16、21和22为质量为m1的集中质量,节点6、12、18和24为质量为m2的刚体,节点25为质量为m3的刚体。如图 6所示,将第一组柔性放大机构与输出平台离散化为柔性直梁、刚体和集中质量,其余3组柔性放大机构离散化类同于第一组。

    图  6  离散化构型
    Figure  6.  Discretization of the fast steering mirror

    对柔性机构的动态分析中首先需要对柔性铰链进行分析,而本文构型所包含的柔性铰链均为柔性直梁。如图 7所示,柔性直梁的两个节点jk包含6个自由度,分别是$ x_j^{\rm{e}}(\omega ) = \left[ {{u_j};{v_j};{w_j};{\alpha _j};} \right.{\beta _j};\left. {{\gamma _j}} \right] $;和$ x_k^{\text{e}}(\omega ) = \left[ {{u_k};{v_k};{w_k};{\alpha _k};{\beta _k};{\gamma _k}} \right] $,$ \left[ {{u_j};} \right.{v_j};\left. {{w_j}} \right] $和$\left[ {{u_k};{v_k};{w_k}} \right]$表示沿坐标轴方向的位移,$\left[ {{\alpha _j};} \right.{\beta _j};\left. {{\gamma _j}} \right]$和$\left[ {{\alpha _k};{\beta _k};{\gamma _k}} \right]$表示垂直于坐标轴方向的转角。

    图  7  柔性直梁
    Figure  7.  Flexible cantilever

    基于矩阵位移法,柔性单元的节点力$F_j^{\text{e}}(\omega ) = \left[ {{F_{xj}};{F_{yj}};{F_{zj}};{M_{xj}};{M_{yj}};{M_{zj}}} \right] \text{,}F_k^{\text{e}}(\omega ) = \left[ {{F_{xk}};{F_{yk}};} \right.{F_{kj}};{M_{kj}};{M_{kj}};$$\left. {{M_{kj}}} \right]$和节点位移$x_j^{\text{e}}(\omega ), x_k^{\text{e}}(\omega )$满足广义胡克定律,即:

    $$ \left\{ {\begin{array}{*{20}{c}} {F_j^{\text{e}}\left( \omega \right)} \\ {F_k^{\text{e}}\left( \omega \right)} \end{array}} \right\} = {{\boldsymbol{D}}^{\text{e}}}\left( \omega \right) \cdot \left\{ {\begin{array}{*{20}{c}} {x_j^{\text{e}}\left( \omega \right)} \\ {x_k^{\text{e}}\left( \omega \right)} \end{array}} \right\} $$ (1)

    式(1)中:De(ω)为一个柔性单元的动力刚度矩阵。

    进一步分析该柔性单元的动力刚度矩阵,即:

    $$ {{\boldsymbol{D}}^{\text{e}}}\left( \omega \right) = \left[ {\begin{array}{*{20}{c}} {{d_1}}&0&0&0&0&0&{{d_5}}&0&0&0&0&0 \\ {}&{{d_2}\left( {{I_z}} \right)}&0&0&0&{{d_3}\left( {{I_z}} \right)}&0&{{d_6}\left( {{I_z}} \right)}&0&0&0&{{d_7}\left( {{I_z}} \right)} \\ {}&{}&{{d_2}\left( {{I_y}} \right)}&0&{ - {d_3}\left( {{I_y}} \right)}&0&0&0&{{d_6}\left( {{I_y}} \right)}&0&{ - {d_7}\left( {{I_y}} \right)}&0 \\ {}&{}&{}&{{d_9}}&0&0&0&0&0&{{d_{10}}}&0&0 \\ {}&{}&{}&{}&{{d_4}\left( {{I_y}} \right)}&0&0&0&{{d_7}\left( {{I_y}} \right)}&0&{{d_8}\left( {{I_y}} \right)}&0 \\ {}&{}&{}&{}&{}&{{d_4}\left( {{I_z}} \right)}&0&{ - {d_7}\left( {{I_z}} \right)}&0&0&0&{{d_8}\left( {{I_z}} \right)} \\ {}&{}&{}&{}&{}&{}&{{d_1}}&0&0&0&0&0 \\ {}&{}&{}&{}&{}&{}&{}&{{d_2}\left( {{I_z}} \right)}&0&0&0&{ - {d_3}\left( {{I_z}} \right)} \\ {}&{}&{}&{}&{{\rm{sym}}}&{}&{}&{}&{{d_2}\left( {{I_y}} \right)}&0&{{d_3}\left( {{I_y}} \right)}&0 \\ {}&{}&{}&{}&{}&{}&{}&{}&{}&{{d_9}}&0&0 \\ {}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{{d_4}\left( {{I_y}} \right)}&0 \\ {}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{{d_4}\left( {{I_z}} \right)} \end{array}} \right] $$ (2)

    式(2)中:dq(q=1, 2, …, 10)是De(ω)的系数;dqIy or Iz)表示该系数是和惯性矩相对于y轴或z轴的惯性矩(Iy=(t3h)/12或Iz=(t3h)/12)相关的函数。对于dq(q=1, 2, …, 10)选取二阶泰勒展开式计算,即:

    $$ {d_1}{\text{ = }}\frac{{EA}}{l}\left( {1 - \frac{1}{3}{\alpha ^2} - \frac{1}{{45}}{\alpha ^4} - \cdots } \right) $$ (3)
    $$ {d_2}{\text{ = }}\frac{{EI}}{{{l^3}}}\left( {12 - \frac{{13}}{{35}}{\beta ^4} - \frac{{59}}{{161700}}{\beta ^8} - \cdots } \right) $$ (4)
    $$ {d_3}{\text{ = }}\frac{{EI}}{{{l^2}}}\left( {6 - \frac{{11}}{{210}}{\beta ^4} - \frac{{223}}{{2910600}}{\beta ^8} - \cdots } \right) $$ (5)
    $$ {d_4}{\text{ = }}\frac{{EI}}{l}\left( {4 - \frac{1}{{105}}{\beta ^4} - \frac{{71}}{{4365900}}{\beta ^8} - \cdots } \right) $$ (6)
    $$ {d_5}{\text{ = }} - \frac{{EA}}{l}\left( {1 + \frac{1}{6}{\alpha ^2} + \frac{7}{{360}}{\alpha ^4} + \cdots } \right) $$ (7)
    $$ {d_6}{\text{ = }} - \frac{{EI}}{{{l^3}}}\left( {12 + \frac{9}{{70}}{\beta ^4} + \frac{{1279}}{{3880800}}{\beta ^8} + \cdots } \right) $$ (8)
    $$ {d_7}{\text{ = }}\frac{{EI}}{{{l^2}}}\left( {6 + \frac{{13}}{{420}}{\beta ^4} + \frac{{1681}}{{23284800}} + \cdots } \right) $$ (9)
    $$ {d_8}{\text{ = }}\frac{{EI}}{l}\left( {2 + \frac{1}{{140}}{\beta ^4} + \frac{{1097}}{{69854400}}{\beta ^8} + \cdots } \right) $$ (10)
    $$ {d_9}{\text{ = }}\frac{{G{I_x}}}{l}\left( {1 - \frac{1}{3}{\gamma ^2} - \frac{1}{{45}}{\gamma ^4} - \cdots } \right) $$ (11)
    $$ {d_{10}}{\text{ = }} - \frac{{G{I_x}}}{l}\left( {1 + \frac{1}{6}{\gamma ^2} + \frac{7}{{360}}{\gamma ^4} + \cdots } \right) $$ (12)

    式(3)~式(12)中:α2ω2l2ρ/Eβ4ω2l4ρA/EIγ2ω2l2ρ/G。其中E为杨氏模量;G为剪切模量;ρ表示密度;A为横截面积;ω表示频率。

    式(2)是在其局部坐标系下的动力刚度矩阵,但在动力学分析中需要将其转换到参考坐标系中。对于第i(i=1, 2, …, 44)个柔性直梁其坐标变换分析如下:

    $$ {{\boldsymbol{D}}_i}\left( \omega \right) = {\boldsymbol{R}}_i^{\rm{T}} \cdot {{\boldsymbol{D}}^{\text{e}}}\left( \omega \right) \cdot {{\boldsymbol{R}}_i} $$ (13)
    $$ {{\boldsymbol{R}}_i} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{\lambda}} _i}}&{{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{O}}_{3 \times 3}}} \\ {{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{\lambda}} _i}}&{{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{O}}_{3 \times 3}}} \\ {{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{\lambda}} _i}}&{{{\boldsymbol{O}}_{3 \times 3}}} \\ {{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{\lambda}} _i}} \end{array}} \right] $$ (14)
    $$ {{\boldsymbol{\lambda}} _i} = \left[ {\begin{array}{*{20}{c}} {\cos \left( {{x_i}, x} \right)}&{\cos \left( {{x_i}, y} \right)}&{\cos \left( {{x_i}, z} \right)} \\ {\cos \left( {{y_i}, x} \right)}&{\cos \left( {{y_i}, y} \right)}&{\cos \left( {{y_i}, z} \right)} \\ {\cos \left( {{z_i}, x} \right)}&{\cos \left( {{z_i}, y} \right)}&{\cos \left( {{z_i}, z} \right)} \end{array}} \right] $$ (15)

    式(14)中:O3×3是维度为3×3的0矩阵。式(15)矩阵中每一项为第i个柔性直梁局部坐标系与参考坐标系各坐标轴之间的余弦值。

    i个柔性直梁经过坐标变换,在参考坐标系中的力与位移的关系可表示为式(16):

    $$ \left\{ {\begin{array}{*{20}{c}} {{F_{i, j}}} \\ {{F_{i, k}}} \end{array}} \right\} = {{\boldsymbol{D}}_i} \cdot \left\{ {\begin{array}{*{20}{c}} {{x_{i, j}}} \\ {{x_{i, k}}} \end{array}} \right\} = \left[ {\begin{array}{*{20}{c}} {{k_{i, 1}}}&{{k_{i, 2}}} \\ {{k_{i, 3}}}&{{k_{i, 4}}} \end{array}} \right] \cdot \left\{ {\begin{array}{*{20}{c}} {{x_{i, j}}} \\ {{x_{i, k}}} \end{array}} \right\} $$ (16)

    式中:$ \left\{ {{F_{i, j}}, {F_{i, k}}} \right\} $和$ \left\{ {{x_{i, j}}, {x_{i, k}}} \right\} $是参考坐标系下第i个柔性直梁的节点力和节点位移。ki, 1ki, 2ki, 3ki, 4是动力刚度矩阵Di的子矩阵。

    刚性体(输出平台和杠杆放大机构的刚性梁)和集中质量(两级桥式放大构型的连接部分)也是分析构型动力学的重要组成单元,对于第nn=3、4、6、9、10、12、15、16、18、21、22、24、25)个节点为刚体或集中质量的分析如式(17)、(18)和(19)所示:

    $$ {{\boldsymbol{M}}_n}\left( \omega \right) = - {\omega ^2} \cdot \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{M}}_{3 \times 3}}}&{{{\boldsymbol{O}}_{3 \times 3}}} \\ {{{\boldsymbol{O}}_{3 \times 3}}}&{{{\boldsymbol{J}}_{n, 3 \times 3}}} \end{array}} \right] $$ (17)
    $$ {{\boldsymbol{M}}_{3 \times 3}} = \left[ {\begin{array}{*{20}{c}} m&0&0 \\ 0&m&0 \\ 0&0&m \end{array}} \right] $$ (18)
    $$ {{\boldsymbol{J}}_{n, 3 \times 3}} = {\boldsymbol{\lambda}} _n^{\rm{T}} \cdot \left[ {\begin{array}{*{20}{c}} {{J_x}}&0&0 \\ 0&{{J_y}}&0 \\ 0&0&{{J_z}} \end{array}} \right] \cdot {{\boldsymbol{\lambda}} _n} $$ (19)

    式(17)、(18)和(19)中:Mn(ω)表示第n个节点为刚性体或集中质量的动力刚度矩阵;m是该单元的质量,JxJyJz是该单元相对于质心的惯性矩。式(19)中坐标变换矩阵λn与式(15)λi计算方法一致。

    已完成在参考坐标系下所有柔性直梁、集中质量和刚体的动力刚度矩阵,进一步建立所有节点力的平衡方程组,表示为节点位移的形式,如式(20)所示:

    $$ \left\{ {\begin{array}{*{20}{c}} { - {f_{{\rm{in}}, 1}} = \left( {{k_{1, 1}} + {k_{2, 1}}} \right) \cdot {x_1} + {k_{1, 2}} \cdot {x_3} + {k_{2, 2}} \cdot {x_4}} \\ {{f_{{\rm{in}}, 1}} = \left( {{k_{3, 4}} + {k_{4, 4}}} \right) \cdot {x_2} + {k_{3, 3}} \cdot {x_3} + {k_{4, 3}} \cdot {x_4}} \\ {0 = {k_{1, 3}} \cdot {x_1} + {k_{3, 2}} \cdot {x_2} + \left( {{k_{1, 4}} + {k_{3, 1}} + {k_{5, 1}} + {k_{8, 1}} + {M_3}} \right) \cdot {x_3} + {k_{5, 2}} \cdot {x_5}} \\ {0 = {k_{2, 3}} \cdot {x_1} + {k_{4, 2}} \cdot {x_2} + \left( {{k_{2, 4}} + {k_{4, 1}} + {k_{6, 4}} + {k_{7, 4}} + {M_4}} \right) \cdot {x_4} + {k_{6, 3}} \cdot {x_5}} \\ {0 = {k_{5, 3}} \cdot {x_3} + {k_{6, 2}} \cdot {x_4} + \left( {{k_{5, 4}} + {k_{6, 1}} + {k_{9, 1}}} \right) \cdot {x_5} + {k_{9, 2}} \cdot {x_6}} \\ {0 = {k_{9, 3}} \cdot {x_5} + \left( {{k_{9, 4}} + {k_{10, 4}} + {k_{41, 1}} + {M_6}} \right) \cdot {x_6} + {k_{41, 2}} \cdot {x_{25}}} \\ { \cdots \cdots } \\ {{f_{\rm{o}}}\left( \omega \right) = {k_{41, 3}} \cdot {x_6} + {k_{42, 3}} \cdot {x_{12}} + {k_{43, 3}} \cdot {x_{18}} + {k_{44, 3}} \cdot {x_{24}} + \left( {{k_{41, 4}} + {k_{42, 4}} + {k_{43, 4}} + {k_{44, 4}}} \right) \cdot {x_{25}}} \end{array}} \right. $$ (20)

    由于构型中压电陶瓷驱动器输入力均沿x轴方向,所以式(20)中$ {f_{in, s}}\left( \omega \right) = \left[ {{f_{in, s}};0;0;0;0;0} \right] $(s=1, 2, 3, 4), Mn已由式(18)求出,$ \left\{ {{F_{i, j}}, {F_{i, k}}} \right\} $已由式(16)求出。fo(ω)是输出平台的虚拟力,只有在求输出刚度时不为0。

    柔性机构的通用动力刚度模型统一表示为:

    $$ \left\{ {F\left( \omega \right)} \right\} = \left[ {{\boldsymbol{D}}\left( \omega \right)} \right] \cdot \left\{ {X\left( \omega \right)} \right\} $$ (21)

    进一步将式(21)表示为柔性机构的通用动力刚度模型,即式(22):

    $$ \left\{ {\begin{array}{*{20}{c}} { - {f_{in, 1}}} \\ {{f_{in, 1}}} \\ 0 \\ \vdots \\ {{f_{\rm{o}}}\left( \omega \right)} \end{array}} \right\} = \left[ {\begin{array}{*{20}{c}} {{k_{1, 1}} + {k_{2, 1}}}&0&{{k_{1, 2}}}&{{k_{2, 2}}}&0& \cdots &0 \\ 0&{{k_{3, 4}} + {k_{4, 4}}}&{{k_{3, 3}}}&{{k_{4, 3}}}&0& \cdots &0 \\ {{k_{1, 3}}}&{{k_{3, 2}}}&{{k_{1, 4}} + {k_{3, 1}} + {k_{5, 1}} + {k_{8, 1}} + {M_3}}&0&{{k_{5, 2}}}& \cdots &0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0&0&0&0&0& \ldots &{{k_{41, 4}} + {k_{42, 4}} + {k_{43, 4}} + {k_{44, 4}}} \end{array}} \right] \cdot \\ \left\{ {\begin{array}{*{20}{c}} {{x_1}} \\ {{x_2}} \\ {{x_3}} \\ \vdots \\ {{x_{25}}} \end{array}} \right\} $$ (22)

    由式(22)可知输入$ \left\{ {F\left( \omega \right)} \right\} $时,输出位移为$ \left\{ {X\left( \omega \right)} \right\} $,$ \left\{ {X\left( \omega \right)} \right\} $包括输出平台的输出位移$ {x_{25}} = \left[ {{u_{25}};{v_{25}};{w_{25}};{\alpha _{25}};{\beta _{25}};{\gamma _{25}}} \right] $。构型固有频率为机构整体动力刚度矩阵$ \left[ {{\boldsymbol{D}}\left( \omega \right)} \right] $行列式为0的根。如图 8所示,纵坐标表示动力刚度矩阵$ \left[ {{\boldsymbol{D}}\left( \omega \right)} \right] $参数,横坐标表示柔性机构固有频率。当$ \left[ {{\boldsymbol{D}}\left( \omega \right)} \right] = 0 $时,一阶固有频率为309 Hz,与有限元分析结果315.49 Hz的误差为1.9%,二阶固有频率为322 Hz,与有限元分析结果315.73 Hz的误差为2.22%。

    图  8  固有频率计算结果
    Figure  8.  Natural frequency calculation results

    由于输出平台沿x轴、y轴方向位移和绕z轴偏转角可忽略不计,所以输出平台偏转角只与输出平台绕x轴的偏转角α25,绕y轴的偏转角β25,沿z轴的位移ω25相关,由此可以得到,偏转后输出平台平面上有三点p1=(0; cosα25; 0; sinα25+w25),p2=(cosβ25; 0; sinβ25+w25),p3=(0; 0; w25),则偏转后平台的一个法向量$ \overrightarrow {{{\boldsymbol{n}}_1}} $为:

    $$ \overrightarrow {{{\boldsymbol{n}}_1}} = {\left[ \begin{gathered} - \cos {\alpha _{25}} \cdot \sin {\beta _{25}} \hfill \\ - \cos {\beta _{25}} \cdot \sin {\alpha _{25}} \hfill \\ \cos {\beta _{25}} \cdot \left( {\sin {\alpha _{25}} + {w_{25}}} \right) \hfill \\ \end{gathered} \right]^{\rm T}} $$ (23)

    若平台未偏转,只沿z轴位移w25,则平台的一个法向量为$ \overrightarrow {{{\boldsymbol{n}}_2}} = \left[ {0, 0, c} \right] $,c是常数,进一步可得出偏转后平台偏转角αp为:

    $$ {\alpha _p} = \arccos \frac{{\left| {{{\vec {\boldsymbol{n}}}_1} \cdot {{\vec {\boldsymbol{n}}}_2}} \right|}}{{\left| {{{\vec {\boldsymbol{n}}}_1}} \right| \cdot \left| {{{\vec {\boldsymbol{n}}}_2}} \right|}} $$ (24)

    在此基础上对快速反射镜柔性机构关键尺寸参数进行优化,选择桥式放大机构柔性臂的夹角θ,长度l,宽度t和高度h为待优化参数,以快速反射镜偏转角度最大化为优化目标,得到优化参数与偏转角度和固有频率的关系如图 9~图 12所示。

    图  9  柔性臂的夹角与固有频率和偏转角之间的关系
    Figure  9.  The relationship between θ and ω, deflection angle of flexible mechanism
    图  10  柔性臂的长度与固有频率和偏转角之间的关系
    Figure  10.  The relationship between l and ω, deflection angle of flexible mechanism
    图  11  柔性臂的厚度与固有频率和偏转角之间的关系
    Figure  11.  The relationship between t and ω, deflection angle of flexible mechanism
    图  12  柔性臂的高度与固有频率和偏转角之间的关系
    Figure  12.  The relationship between h and ω, deflection angle of flexible mechanism

    图 9所示,柔性臂的夹角变化范围为11°~25°,其他参数固定不变。红色曲线表示柔性臂夹角与快速反射镜偏转角之间的关系,随着柔性臂夹角增加,快速反射镜偏转角呈现先增后减趋势,当夹角θ=18°时,快速反射镜偏转角度到达最大值。黑色曲线表示柔性臂夹角与柔性机构固有频率之间的关系。随着柔性臂夹角增加,固有频率呈现先减后增趋势,当夹角θ=20°时,固有频率到达峰值最小值。

    图 10~图 12所示,分别对柔性臂长度l,宽度t和高度h与快速反射镜偏转角之间的关系进行分析。可以发现,随着控制变量参数值增加,快速反射镜偏转角都呈现出先增后减的趋势。结合上述分析,选取参数应靠近最佳参数,同时考虑到结构的固有频率ω不宜过低、结构紧凑等因素,本文最终选取优化结果为:θ=18°、l=20 mm、t=0.9 mm、h=6.5 mm、ω=336 Hz、αp=50 mrad。

    对快速反射镜进行仿真分析,设PEAs输出最大位移为16 μm,则柔性机构位移仿真结果如图 13所示,根据输出位移最大值,可以求出最大偏转角αp为100.8 mrad。模态仿真分析如图 14所示,一阶固有频率为336.4 Hz,二阶固有频率为336.63 Hz。

    图  13  快速反射镜构型静态响应
    Figure  13.  Static response of fast steering mirror configuration
    图  14  柔性机构模态分析
    Figure  14.  Modal analysis of flexible mechanism

    表 3所示,将国内外同类研究与本研究成果进行对比可知,本文设计的压电驱动快速反射镜具有结构紧凑、偏转角度大的优势。

    表  3  快速反射镜关键参数对比
    Table  3.  Comparison of key parameters of fast steering mirror
    Reference Piezoelectric actuator length /mm Number of deflection degrees of freedom Mechanical deflection range around x axis/mrad Mechanical deflection range around y axis /mrad First natural frequency /Hz
    Ref. [10] - 1 - 24 1872
    Ref. [11] - 1 - 52.3 180
    Ref. [16] - 2 4.8 4.8 6700
    Ref. [13] - 2 21 21 349
    Ref. [14] 72 2 52.93 55.41 105.45
    This paper 36 2 100 100 336
    下载: 导出CSV 
    | 显示表格

    本文针对柔性机构构型级数与放大比之间的关系开展了定量分析,得出了嵌套级数的选择依据。针对不同构型方案的固有频率和放大比进行仿真分析,得出了三级混合构型的设计方案。进一步将整体构型离散化为柔性铰链、刚性体和集中质量等基本单元,并计算各单元在参考坐标系中的刚度矩阵。结合矩阵位移法,建立了整个柔性机构的动态响应模型,为柔性铰链、刚性体等单元的参数优化提供了理论依据。最后,对柔性机构开展了模态分析,验证了动态响应模型的能够较为准确地描述快速反射镜的动态行为。与国内外同类研究相比,该机构可以在保证较高一阶固有频率的基础上实现100 mrad机械偏转角度。本文侧重于大转角快速反射镜柔性机构的优化设计与动态分析,针对压电驱动快速反射镜的控制方法研究将在后续工作中开展。

  • 图  1   可测扰动自适应前馈反演控制系统框图

    Figure  1.   Block diagram of adaptive feedforward inversion control system for measurable disturbance system

    图  2   不可测扰动自适应反演控制框图

    Figure  2.   Block diagram of adaptive inversion control for unmeasurable disturbance system

    图  3   不可测扰动自适应反演PID控制系统框图

    Figure  3.   Block diagram of adaptive inversion PID control for unmeasurable disturbance system

    图  4   可测扰动自适应反演控制系统输出响应曲线

    Figure  4.   Output response curve of adaptive inversion control for measurable disturbance system

    图  5   三种控制算法的阶跃响应曲线

    Figure  5.   Output comparison of three control methods

    图  6   不可测扰动作用下3种系统的阶跃响应曲线

    Figure  6.   Step response of three control methods of unmeasurable disturbance system

    图  7   三种控制算法的误差平方曲线

    Figure  7.   Square error curves of three control methods

    图  8   不同频率扰动作用下误差曲线对比

    Figure  8.   Comparison of error signals of control systems under different frequency disturbances

  • [1] 马佳光. 捕获跟踪与瞄准系统的基本技术问题[J]. 光电工程, 1989(3): 1-42.

    MA Jiaguang. The basic techno1ogies of the acquisition, tracking and pointing systems[J]. Opto-Electronic Engineering, 1989(3): 1-42.

    [2]

    ABID M, YU J, XIE Y, et al. Conceptual design, modeling and compliance characterization of a novel 2-DOF rotational pointing mechanism for fast steering mirror[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3564-74. DOI: 10.1016/j.cja.2020.03.032

    [3] 丁科, 黄永梅, 马佳光, 等. 抑制光束抖动的快速反射镜复合控制[J]. 光学精密工程, 2011, 19(9): 1991-1998.

    DING Ke, HUANG Yongmei, MA Jiaguang, et al. Composite control of fast steering mirror for beam jitter[J]. Optics and Precision Engineering, 2011, 19(9): 1991-1998.

    [4] 丁科, 黄永梅, 马佳光, 等. 快速反射镜的误差自适应前馈复合控制[J]. 中国激光, 2011, 38(7): 184-193.

    DING Ke, HUANG Yongmei, MA Jiaguang, et al. Error adaptive feedforward composite control of fast-steering-mirror[J]. Chinese Journal of Lasers, 2011, 38(7): 184-193.

    [5]

    DENG C, MAO Y, REN G. MEMS inertial sensors-based multi-loop control enhanced by disturbance observation and compensation for fast steering mirror system[J]. Sensors, 2016, 16(11): 1-12. DOI: 10.1109/JSEN.2016.2552318

    [6]

    TIAN Jing, YANG Wenshu, PENG Zhenming, et al. Application of MEMS accelerometers and gyroscopes in fast steering mirror control systems[J]. Sensors, 2016, 16(4): 440. DOI: 10.3390/s16040440

    [7] 凡木文, 黄林海, 李梅, 等. 抑制光束抖动的压电倾斜镜高带宽控制[J]. 物理学报, 2016, 65(2): 158-165.

    FAN Muwen, HUANG Linhai, LI Mei, et al. High-bandwidth control of piezoelectric steering mirror for suppression of laser beam jitter[J]. Acta Physica Sinica, 2016, 65(2): 158-165.

    [8] 钱鹏俊, 廖文和, 陆正亮, 等. 质量矩固体推进微纳卫星自适应反演控制律设计[J]. 推进技术, 2022, 43(1): 9.

    QIAN Pengjun, LIAO Wenhe, LU Zhengliang, et al. Design of adaptive backstepping control for moving mass micro-nano satellite with solid rocket[J]. Motor Journal of Propulsion Technology, 2022, 43(1): 9.

    [9] 艾志伟, 嵇建波, 王鹏举, 等. 两轴柔性支承快速反射镜结构控制一体化设计[J]. 红外与激光工程, 2020, 49(7): 8.

    AI Zhiwei, JI Jianbo, WANG Pengju, et al. Integrative design of structure control for two-axis fast steering mirror with flexible support[J]. Infrared and Laser Engineering, 2020, 49(7): 8.

    [10] 王昱棠, 张宇鹏, 徐钰蕾. 压电陶瓷驱动快速反射镜双闭环控制[J]. 仪器仪表学报, 2014(S1): 5.

    WANG Yutang, ZHANG Yupeng, XU Yulei. Dual-loop control strategy for fast-steering mirror driven by PZT[J]. Chinese Journal of Scientific Instrument, 2014(S1): 5.

    [11]

    LU Yafei, FAN Dapeng, ZHANG Zhiyong. Theoretical and experimental determination of bandwidth for a two-axis fast steering mirror[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(16): 2443-2449. DOI: 10.1016/j.ijleo.2012.08.023

    [12]

    ZHONG J, NISHIDA R, SHINSHI T. Design and precision tracking control of a high-bandwidth fast steering mirror for laser beam machining[J]. Precision Engineering, 2022, 73: 128-139. DOI: 10.1016/j.precisioneng.2021.09.003

图(8)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  47
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-10
  • 修回日期:  2022-07-27
  • 刊出日期:  2024-02-19

目录

/

返回文章
返回
x 关闭 永久关闭

尊敬的专家、作者、读者:

端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

感谢您对本刊的支持!

《红外技术》编辑部

2024年6月6日