Application of Ultraviolet Image Intensifiers in Combustion Diagnostics of Aero-engines
-
摘要:
航空发动机燃烧过程中,OH*、NO*、NH*等激发态自由基伴随着紫外波段的微弱自发光,且随燃烧的进程而快速变化。紫外像增强器最高具有百万倍电子增益、纳秒量级快门,可以实现紫外波段燃烧流场瞬态结构的捕获,为定量化测量、阐释燃烧特性随多物理参数的变化规律奠定基础。本文总结紫外像增强器在航空发动机燃烧光学诊断中的应用,包括针对OH*自发光进行成像的被动光学诊断技术、利用激光激发OH成像的主动光学诊断技术等。最后,结合新型航空发动机高时空分辨探测的要求,指出紫外像增强器在燃烧诊断中的发展方向。
Abstract:In the combustion process of aero-engines, excited-state free radicals such as OH*, NO*, and NH* emit faint self-chemiluminescence in the ultraviolet (UV) band, which changes rapidly with the progress of combustion. UV image intensifiers, featuring up to a million-fold electronic gain and nanosecond-level shutter speed, can capture the transient structure of the combustion flow field in the UV band, laying the foundation for the quantitative measurement and interpretation of the variation rules of combustion characteristics with multiple physical parameters. This paper summarizes the application of UV image intensifiers in optical diagnostics of aero-engine combustion, including passive optical diagnostic techniques for imaging OH* self-chemiluminescence, and active optical diagnostic techniques using laser excitation for OH imaging. Finally, in line with the requirements of high spatial and temporal resolution detection for new types of aero-engines, the development direction of UV image intensifiers in combustion diagnostics is pointed out.
-
-
图 10 手动改变视角的CTC系统示意图:采集的视角θim(a)为30°、50°、70°和90°的OH*自由基图像的伪彩色效果(b)以及CTC三维重建OH*发光分布(c)[32]
Figure 10. Schematic diagram of the CTC system with manually changed viewing angle (a), pseudo-color images of the OH* radical collected at viewing angles θim of 30°, 50°, 70°, and 90° (b), and CTC 3D reconstruction of OH* distribution (c) [32]
图 11 双波段CTC系统示意图(a)及其棱镜分光系统(b),其中FF为光纤束(fiber ferrule);OPM为离轴抛物面镜(off-axis parabolic mirror);EM为平椭圆镜(flat-elliptical mirror);BP为带通滤光片(band-pass filter (optional);SP为短通滤光片(short-pass filter);WP为楔棱镜(wedged prism)[34]
Figure 11. Schematic diagram of the dual-band CTC system (a) and its prism spectrometer system (b), where FF is a fiber ferrule, OPM is an off-axis parabolic mirror, EM is a flat-elliptical mirror, BP is a band-pass filter (optional), SP is a short-pass filter, and WP is a wedged prism[34]
图 13 不同气体燃料内射流进气速度下OH(左)和甲醛(右)的PLIF成像伪彩色效果对比图,6组图像进气速度分别为10 m/s、30 m/s、60 m/s、90 m/s、120 m/s及150 m/s[49]
Figure 13. Pseudo-color image comparison of PLIF imaging of OH (left) and formaldehyde (right) at different gas feeding speed in the inner jet, in which the six groups of images are 10 m/s, 30 m/s, 60 m/s, 90 m/s, 120 m/s and 150 m/s respectively [49]
表 1 国际主流高性能紫外像增强的主要性能指标[52-53]
Table 1 Key performance of mainstream high-performance UV image intensification globally[52-53]
Image intensifier or ICCD/ICMOS Intensifier parameters MCP Spectral range/nm Gain Size/mm Minimum optical gate width/ns EyeiTS-D 2-stage MCP 200−900 > 106 18 3 HiCAM5000 3n 2-stage MCP 200−900 - 18 3 Photek ICMOS 160 muti-MCP 200−900 2×106 18/25 3 Andor iStar sCMOS - 180−850 1000 18 2 Invisible vision UVi - 200−600 3×105 18/25 5 Specialised-imaging SIL3 - 200−900 5×105 25/40 50 Lavision HS-IRO 2-stage MCP 190−800 - 25 10 Princeton PI-MAX 4 - 140−900 - 18/25 2 -
[1] 张猛蛟, 蔡毅, 江峰, 等. 紫外增强硅基成像探测器进展[J]. 中国光学, 2019, 12(1): 19-37. ZHANG Mengjiao, CAI Yi, JIANG Feng, et al. Silicon-based ultraviolet photodetection: progress and prospects[J]. Chinese Optics, 2019, 12(1): 19-37.
[2] Gaydon A G, Wolfhard H G. Flames, Their Structure, Radiation and Temperature[M]. London: Chapman & Hall, 1960.
[3] Gutman David. Shock-tube study of the recombination rate of hydrogen atoms with oxygen molecules[J]. Journal of Chemical Physics, 1967, 47(11): 4400-4407. DOI: 10.1063/1.1701645
[4] Pietzka G. The Spectroscopy of Flames[M]. London: Chapman & Hall, 1974.
[5] Panoutsos C S, Hardalupas Y, Taylor A. Numerical evaluation of equivalence ratio measurement using OH* and CH* chemiluminescence in premixed and non-premixed methane–air flames[J]. Combustion and Flame, 2009, 156(2): 273-291. DOI: 10.1016/j.combustflame.2008.11.008
[6] ZHU H, GONG Y, HE L, et al. Effects of CO and H2 addition on OH* chemiluminescence characteristics in laminar rich inverse diffusion flames[J]. Fuel, 2019, 254: 115554. DOI: 10.1016/j.fuel.2019.05.137
[7] YANG J, GONG Y, WEI J, et al. Chemiluminescence diagnosis of oxygen/fuel ratio in fuel-rich jet diffusion flames[J]. Fuel Processing Technology, 2022, 232: 107284. DOI: 10.1016/j.fuproc.2022.107284
[8] Lauer M, Zellhuber M, Sattelmayer T, et al. Determination of the heat release distribution in turbulent flames by a model based correction of OH* chemiluminescence[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(12): 121501. DOI: 10.1115/1.4004124
[9] Kim T Y, Choi S, Kim H K, et al. Combustion properties of gaseous CH4/O2 coaxial jet flames in a single-element combustor[J]. Fuel, 2016, 184: 28-35. DOI: 10.1016/j.fuel.2016.07.001
[10] HE L, GUO Q, GONG Y, et al. Investigation of OH* chemiluminescence and heat release in laminar methane–oxygen co-flow diffusion flames[J]. Combustion and Flame, 2019, 201: 12-22. DOI: 10.1016/j.combustflame.2018.12.009
[11] Kojima J, Ikeda Y, Nakajima T. Basic aspects of OH (A), CH (A), and C2 (d) chemiluminescence in the reaction zone of laminar methane–air premixed flames[J]. Combustion and Flame, 2005, 140(1-2): 34-45. DOI: 10.1016/j.combustflame.2004.10.002
[12] NI S, ZHAO D, YOU Y, et al. NOx emission and energy conversion efficiency studies on ammonia-powered micro-combustor with ring-shaped ribs in fuel-rich combustion[J]. Journal of Cleaner Production, 2021, 320: 128901. DOI: 10.1016/j.jclepro.2021.128901
[13] Docquier N, Sébastien Candel. Combustion control and sensors: a review[J]. Progress in Energy and Combustion Science, 2002, 28(2): 107-150. DOI: 10.1016/S0360-1285(01)00009-0
[14] WANG T, WANG Z, TAN J, et al. Combustion characteristics of a confined turbulent jet flame[J]. Fuel, 2022, 323: 124228. DOI: 10.1016/j.fuel.2022.124228
[15] Weber V, Bruebach J, Gordon R L, et al. Pixel-based characterization of CMOS high-speed camera systems[J]. Applied Physics B, 2011, 103(2): 421-433.
[16] ZHANG Z, YANG A, WANG J, et al. OH planar laser-induced fluorescence imaging system using a kilohertz-rate 283 nm UV Ti laser[J]. Applied Optics, 2023, 62(8): 1915-1920. DOI: 10.1364/AO.484749
[17] 王于蓝, 范雄杰, 高伟, 等. 航空发动机燃烧室光学可视模型试验件及其流场测量研究进展[J]. 实验流体力学, 2021, 35(1): 18-33. WANG Yulan, FAN Xiongjie, GAO Wei, et al. Development of optically accessible gas turbine model combustor and its flow field testing[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 18-33.
[18] Gerke U, Steurs K, Rebecchi P, et al. Derivation of burning velocities of premixed hydrogen/air flames at engine-relevant conditions using a single-cylinder compression machine with optical access[J]. International Journal of Hydrogen Energy, 2010, 35(6): 2566-2577. DOI: 10.1016/j.ijhydene.2009.12.064
[19] Handland Imaging. LaVision HighSpeed IRO X Image Intensifier [EB/OL]. [2024-10-15]. https://hadlandimaging.com/lavision-highspeed-iro-x-image-intensifier/.
[20] Ferris M, Susa J, Davidson F, et al. High-temperature laminar flame speed measurements in a shock tube[J]. Combustion and Flame, 2019, 205: 241-252. DOI: 10.1016/j.combustflame.2019.04.007
[21] Pugh D, Runyon J, Bowen P, et al. An investigation of ammonia primary flame combustor concepts for emissions reduction with OH*, NH2* and NH* chemiluminescence at elevated conditions[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6451-6459. DOI: 10.1016/j.proci.2020.06.310
[22] LI X, DONG J, JIN K, et al. Flame acceleration and deflagration-to-detonation transition in a channel with continuous triangular obstacles: effect of equivalence ratio[J]. Process Safety and Environmental Protection, 2022, 167: 576-591. DOI: 10.1016/j.psep.2022.09.033
[23] Ishino Y, Ohiwa N. Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame[J]. JSME International Journal Series B Fluids and Thermal Engineering, 2005, 48(1): 34-40. DOI: 10.1299/jsmeb.48.34
[24] Unterberger A, Röder M, Giese A, et al. 3D instantaneous reconstruction of turbulent industrial flames using computed tomography of chemiluminescence (CTC)[J]. Journal of Combustion, 2018, 2018(1): 5373829.
[25] JIN Y, SONG Y, WANG W, et al. An improved calculation model of weight coefficient for three-dimensional flame chemiluminescence tomography based on lens imaging theory[C]//Real-Time Photonic Measurements, Data Management, and Processing Ⅱ of SPIE, 2016, 10026: 139-147.
[26] JIN Y, SONG Y, QU X, et al. Three-dimensional dynamic measurements of CH* and C2* concentrations in flame using simultaneous chemiluminescence tomography[J]. Optics Express, 2017, 25(5): 4640-4654. DOI: 10.1364/OE.25.004640
[27] Upton T, Verhoeven D, Hudgins D, et al. High-resolution computed tomography of a turbulent reacting flow[J]. Experiments in Fluids, 2011, 50: 125-134. DOI: 10.1007/s00348-010-0900-6
[28] CAI W, LI X, LI F, et al. Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence[J]. Optics Express, 2013, 21(6): 7050-7064. DOI: 10.1364/OE.21.007050
[29] CAI W, Kaminski C. Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows[J]. Progress in Energy and Combustion Science, 2017, 59: 1-31. DOI: 10.1016/j.pecs.2016.11.002
[30] Anikin N, Suntz R, Bockhorn H. Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames[J]. Applied Physics B, 2010, 100: 675-694. DOI: 10.1007/s00340-010-4051-5
[31] Anikin N B, Suntz R, Bockhorn H. Tomographic reconstruction of 2D-OH*-chemiluminescence distributions in turbulent diffusion flames[J]. Applied Physics B, 2012, 107: 591-602. DOI: 10.1007/s00340-012-5003-z
[32] Worth N A, Dawson J R. Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames[J]. Measurement Science and Technology, 2013, 24(2): 024013. DOI: 10.1088/0957-0233/24/2/024013
[33] LV L, TAN J, HU Y. Numerical and experimental investigation of computed tomography of chemiluminescence for hydrogen-air premixed laminar flames[J]. International Journal of Aerospace Engineering, 2016, 2016(1): 6938145.
[34] Häber T, Suntz R, Bockhorn H. Two-dimensional tomographic simultaneous multispecies visualization—Part Ⅱ: Reconstruction accuracy[J]. Energies, 2020, 13(9): 2368. DOI: 10.3390/en13092368
[35] LIU H, YU T, ZHANG M, et al. Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view[J]. Applied Optics, 2017, 56(25): 7107-7115. DOI: 10.1364/AO.56.007107
[36] WANG Q, YU T, LIU H, et al. Optimization of camera arrangement for volumetric tomography with constrained optical access[J]. JOSA B, 2020, 37(4): 1231-1239. DOI: 10.1364/JOSAB.385291
[37] Hughes K J, Pourkashanian M, Wilson C W. OH concentration measurements in a jet engine exhaust[J]. International Journal of Energy for a Clean Environment, 2007, 8(4): 305-320. DOI: 10.1615/InterJEnerCleanEnv.v8.i4.20
[38] 杨仕润, 赵建荣, 俞刚, 等. 超音速燃烧室氢氧基平面激光诱导荧光测量[J]. 激光技术, 2004, 28(1): 20-22. DOI: 10.3969/j.issn.1001-3806.2004.01.023 YANG Shirun, ZHAO Jianrong, YU Gong, et al. Planar laser-induced fluorescence imaging of OH radical in supersonic combustor[J]. Laser Technology, 2004, 28(1): 20-22. DOI: 10.3969/j.issn.1001-3806.2004.01.023
[39] 王宁. 定量测量OH基浓度的PLIF技术研究及应用[D]. 长沙: 国防科学技术大学, 2009. WANG Ning. Quantitative OH-PLIF Technology Research and Application[D]. Changsha: National University of Defense, 2009.
[40] 李麦亮, 周进, 耿辉, 等. 测量火焰中氢氧基分布的激光诱导荧光技术[J]. 国防科技大学学报, 2003, 25(3): 10-13. DOI: 10.3969/j.issn.1001-2486.2003.03.003 LI Mailiang, ZHOU Jin, GENG Hui, et al. Laser induced fluorescence technology for measurements of OH distribution in flames[J]. Journal of National University of Defense Technology, 2003, 25(3): 10-13. DOI: 10.3969/j.issn.1001-2486.2003.03.003
[41] 耿辉, 翟振辰, 桑艳, 等. 利用OH-PLIF技术显示超声速燃烧的火焰结构[J]. 国防科技大学学报, 2006, 28(2): 1-6. DOI: 10.3969/j.issn.1001-2486.2006.02.001 GENG Hui, ZHAI Zhenchen, SANG Yan, et al. Reveal the flame structure of supersonic combustion using OH-PLIF technology[J]. Journal of National University of Defense Technology, 2006, 28(2): 1-6 DOI: 10.3969/j.issn.1001-2486.2006.02.001
[42] 李麦亮, 周进, 耿辉, 等. 平面激光诱导荧光技术在超声速燃烧中的应用[J]. 推进技术, 2004, 25(4): 381. DOI: 10.3321/j.issn:1001-4055.2004.04.022 LI Mailiang, ZHOU Jin. GENG Hui, et al. Application of PLIF in research on supersonic combustion[J]. Journal of Propulsion Technology, 2004, 25(4): 381. DOI: 10.3321/j.issn:1001-4055.2004.04.022
[43] Ben Yakar A, Kamel M, Morris C, et al. Hypersonic combustion and mixing studies using simultaneous OH-PLIF and schlieren imaging[C]//36th AIAA Aerospace Sciences Meeting And Exhibit, 1998: 940.
[44] Ben Yakar A, Hanson R. Hypervelocity combustion studies using simultaneous OH-PLIF and schilieren imaging in an expansion tube[C]//35th Joint Propulsion Conference and Exhibit, 1999: 2453.
[45] Morris C, Kamel M, Ben Yakar A, et al. Combined schilieren and OH PLIF imaging study of ram accelerator flowfields[C]//36th AIAA Aerospace Sciences Meeting and Exhibit, 1998: 244.
[46] 严浩, 张榛, 耿金越, 等. 利用平面激光诱导荧光对旋流火焰OH自由基的定量研究[J]. 西安交通大学学报, 2023, 57(2): 31-38. YAN Hao, ZHANG Zhen, GENG Jinyue, et al. Quantitative Investigation of OH Radical in Swirling Flame by Planar Laser-Induced Fluorescence[J]. Journal of Xi'an Jiaotong University, 2023, 57(2): 31-38.
[47] Paschal T, Parajuli P, Turner M A, et al. High-speed OH* and CH* chemiluminescence imaging and OH planar laser-induced fluorescence (PLIF) in spherically expanding flames[C]//AIAA Scitech 2019 Forum, 2019: 574.
[48] Smith J D, Sick V. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine[J]. Applied Optics, 2005, 44(31): 6682-6691. DOI: 10.1364/AO.44.006682
[49] LI Z S, LI B, SUN Z W, et al. Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame[J]. Combustion & Flame, 2010, 157(6): 1087-1096.
[50] Malbois P, Salaün E, Rossow B, et al. Quantitative measurements of fuel distribution and flame structure in a lean-premixed aero-engine injection system by kerosene/OH-PLIF measurements under high-pressure conditions[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5215-5222. DOI: 10.1016/j.proci.2018.05.171
[51] Litvinov I, Yoon J, Noren C, et al. Time-resolved study of mixing and reaction in an aero-engine model combustor at increased pressure[J]. Combustion and Flame, 2021, 231: 111474. DOI: 10.1016/j.combustflame.2021.111474
[52] 李晓峰, 何雁彬, 常乐, 等. 超二代与三代像增强器性能的比较研究[J]. 红外技术, 2022, 44(8): 14. http://hwjs.nvir.cn/article/id/f450e48d-1281-422f-8ab5-d725f5a0ce3d LI Xiaofeng, HE Yanbin, CHANG Le, et al. Performance comparison between super second generation and third generation image intensifiers[J]. Infrared Technology, 2022, 44(8): 14. http://hwjs.nvir.cn/article/id/f450e48d-1281-422f-8ab5-d725f5a0ce3d
[53] 潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001 PAN Jingsheng. Image intensifier upgraded performance and evaluation standard[J]. Infrared Technology, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001
[54] 王兵, 谢峤峰, 闻浩诚, 等. 爆震发动机研究进展[J]. 推进技术, 2021, 42(4): 721. WANG Bing, XIE Qiaofeng, WEN Haocheng, et al. Research progress of detonation engines[J]. Journal of Propulsion Technology, 2021, 42(4): 721.
[55] 芮长胜, 武郁文, 王晓东, 等. 旋转爆震燃烧航空涡轮发动机研究综述[J]. 航空发动机, 2023, 49(2): 1-12. RUI Changsheng, WU Yuwen, WANG Xiaodong, et al. Review of research on rotating detonation turbine engine[J]. Aeroengine, 2023, 49(2): 1-12.