大视场小型无热化长波红外镜组设计

Design of Compact Athermalized Long-Wave Infrared Lens Set with Large Field of View

  • 摘要: 跟随红外镜头小型化、大视场化的趋势,利用ZEMAX设计了一款大视场无热化小型长波红外镜组。系统匹配384×288@17μm的非制冷型长波红外探测器,工作波段为8~12 μm。系统F数为1.6,相比于传统红外镜头,视场角更大,全视场达72°,尺寸更小,总长仅为6.96 mm。主镜头仅用3片镜片,通过两种红外光学材料的搭配以及6面非球面实现像差的校正和光学系统的无热化,工作温度范围覆盖-40~60℃。仿真结果表明,在空间频率15 lp/mm处,全视场的调制传递函数大于0.5,空间频率30 lp/mm处,全视场调制传递函数大于0.15。同时为了增大红外探测器的填充因子,提高能量利用率,在系统中搭配设计了放置于红外传感器前的微透镜阵列。实现了红外光学系统的小型化,为红外热像仪在智能手机上的应用提供了解决方案。

     

    Abstract: Following the trend of miniaturization and large fields-of-view for infrared lenses, we designed a large-field-of-view athermalized compact long-wave infrared lens using ZEMAX. The system matches a 384×288@17 μm uncooled long-wave infrared detector with an operating band of 8 μm to 12 μm. The F-number of the system is 1.6. The designed system has a larger field-of-view than a traditional infrared lens, with a full field-of-view reaching 72°. The size of the designed system is small with a total length of only 6.96 mm. The primary lens system lens uses only 3 lenses. Aberration correction and athermalization was realized by combining two infrared materials and six aspherical surfaces. The system has a working temperature range of −40℃ to 60℃. Simulation results show that the MTF of the full field-of-view reaches 0.5 at a spatial frequency of 15 lp/mm and 0.15 at a spatial frequency of 30 lp/mm. Further, to increase the filling factor of the infrared detector and improve energy efficiency, a microlens array is placed in front of the infrared sensor. Miniaturization of the infrared optical system was achieved, providing a solution for the application of thermal imaging cameras on smartphones.

     

/

返回文章
返回