单活塞线性压缩机用动力吸振器理论分析与Matlab仿真

孔德锐, 夏明, 李海英, 陈军, 赵鹏

孔德锐, 夏明, 李海英, 陈军, 赵鹏. 单活塞线性压缩机用动力吸振器理论分析与Matlab仿真[J]. 红外技术, 2021, 43(10): 1014-1021.
引用本文: 孔德锐, 夏明, 李海英, 陈军, 赵鹏. 单活塞线性压缩机用动力吸振器理论分析与Matlab仿真[J]. 红外技术, 2021, 43(10): 1014-1021.
KONG Derui, XIA Ming, LI Haiying, CHEN Jun, ZHAO Peng. Theoretical Analysis and Matlab Simulation of Dynamic Vibration Absorber for Single-Piston Linear Compressor[J]. Infrared Technology , 2021, 43(10): 1014-1021.
Citation: KONG Derui, XIA Ming, LI Haiying, CHEN Jun, ZHAO Peng. Theoretical Analysis and Matlab Simulation of Dynamic Vibration Absorber for Single-Piston Linear Compressor[J]. Infrared Technology , 2021, 43(10): 1014-1021.

单活塞线性压缩机用动力吸振器理论分析与Matlab仿真

详细信息
    作者简介:

    孔德锐(1993-),男,云南昭通人,硕士研究生,研究方向:小型低温制冷机。E-mail:1024197919@qq.com

    通讯作者:

    夏明(1977-),男,研究员,主要从事小型低温制冷机研究。E-mail:15969586435@163.com

  • 中图分类号: TB652

Theoretical Analysis and Matlab Simulation of Dynamic Vibration Absorber for Single-Piston Linear Compressor

  • 摘要: 单活塞线性斯特林制冷机由于其降温速度快、质量小和可靠性高等特点,目前正广泛用于红外探测器中,但是由于压缩机运行时产生的振动会严重影响探测器成像质量,所以在振动抑制方面动力吸振器的使用成为单活塞线性压缩机的最佳减振方式。基于此,本文首先论述了动力吸振器在单活塞线性压缩机减振方面的作用,并举例介绍了当前单活塞线性压缩机用动力吸振器的基本结构。为了不失理论分析的一般性,在动力吸振器与压缩机振动模型的理论计算中引入了几个重要的无量纲参数。最后在此基础上,利用Matlab软件对动力吸振器与压缩机模型进行振动幅频特性仿真。
    Abstract: Single-piston linear Stirling cryocoolers are widely used in infrared detectors owing to their fast cooling, lightweight, and high reliability. However, the vibration generated by the compressor during operation considerably affects the imaging quality of the detector. Therefore, the use of a dynamic vibration absorber has become the best vibration reduction method for single-piston linear compressors. First, this article discusses the role of a dynamic vibration absorber in damping single-piston linear compressors and provides an example of the basic structure of current single-piston linear compressors. Second, to generalize the theoretical analysis, several important dimensionless parameters are introduced in the theoretical calculation of the dynamic vibration absorber and compressor vibration model. Finally, Matlab is used to simulate the vibration amplitude-frequency characteristics of the dynamic vibration absorber and compressor model
  • 随着红外制导技术的不断发展,装有红外传感器的导弹是飞机的最主要威胁,据统计,1973-2001年有49%的飞机损失来自红外导弹,其中1984-2001年90%的飞机损失来自红外导弹[1-2]。为保护飞机免受红外制导导弹的攻击,红外干扰弹应运而生,现今发展的红外干扰弹包括多点源红外干扰弹和面源红外干扰弹。多点源红外干扰弹依靠烟火药柱产生一个与飞机红外辐射特性类似,但能量大于飞机辐射能量2~10倍的热源,以质心干扰的方式达到欺骗来袭红外制导导弹的目的[3];面源红外干扰弹依靠在空间形成大面积红外辐射云团,使飞机“淹没”在红外辐射云团中,以掩盖飞机自身的红外辐射特征,导致红外导引头无法分辨飞机红外辐射源和面源红外干扰弹辐射源[4-5],飞机采用机动规避的方式逃逸出导引头视场,从而免遭红外制导导弹的攻击;多点源红外干扰弹在空中形成强红外辐射源诱骗红外导引头,面红外辐射源在空中形成大面积红外辐射源掩盖飞机自身的红外辐射源,两者结合,可有效迷惑红外制导导引头,提高载机的自卫对抗能力。

    飞机的红外辐射特性是红外制导导弹识别、捕获、跟踪、摧毁飞机的信号来源,飞机的红外辐射信号主要由机身蒙皮、尾喷管和尾焰组成[4],其中尾焰和尾喷管是飞机红外辐射的主要来源,红外制导导弹从不同方向攻击飞机时,由于方向不同,导致导引头探测目标的辐射强度和辐射面积差异很大,飞机投放干扰弹的时机和种类也不同。因此,探测飞机在不同方向的辐射特征对干扰弹弹种选择具有重要意义。

    本文采用光谱辐射计、中波红外热像仪、长波红外热像仪对飞机在不同方向上的红外辐射性能进行测试,研究飞机发动机工作时在不同方向上的红外辐射性能,指导飞机应对不同方向来袭的红外制导导弹时红外干扰弹投放使用策略。

    选择飞机0°、正侧向90°、尾后180°三个测试角度,选择合适测试点,飞机发动机处于正常工作状态,测试场景示意图如图 1所示,测试距离300 m,飞机包络尺寸为不大于50 m×50 m×10 m,飞机发动机直径不大于1 m,因此,在测试场景下飞机可当作点目标。

    图  1  测试场景示意图
    Figure  1.  Schematic diagram of test scenario

    试验前应对光谱辐射计进行标定,在同一测试条件下,对黑体和被测试目标进行测试,标定对应温度下的黑体温度。

    $$ I(\lambda )=\frac{({V}_{\rm{s}}-{V}_{\rm{b}}){R}^{2}}{({V}_{\rm{BB}}-{V}_{\rm{Bb}}){L}^{2}}\times M({T}_{\rm{BB}})\times \frac{\rm{π}{D}^{4}}{4}$$ (1)

    式中:VsVb分别为飞机的信号、飞机附近的背景信号;VBBVBb分别为黑体的信号、背景信号;R为测试距离;L为黑体标定距离;TBB为黑体温度;M(TBB)为黑体在TBB的光谱辐射出射度;D为光阑口径。

    选定不同方位(迎头、正侧向、尾后),架好仪器设备,发动机处于正常工作状态下,测试飞机的中/长波红外辐射强度、辐射面积。

    辐射计测试时,首先采用标准黑体源对光谱辐射计进行标定,得到光谱辐射计的光谱响应曲线;随后,采用标定后的光谱辐射计对待测对象进行测试,经过光谱强度积分和大气修正得到测试飞机的辐射强度曲线[6]

    按式(2)计算光谱响应系数:

    $$K\left( \lambda \right) = \frac{{\Delta {V_{\rm{c}}}\left( \lambda \right) \cdot {{\left( {{L_{\rm{c}}}} \right)}^2}}}{{{A_{{\rm{bb}}}} \cdot P\left( {\lambda ,{T_{\rm{c}}}} \right)}}$$ (2)

    式中:K(λ)为标定系数,V/(W/(μm·m2));ΔVc(λ)为标定电压,V;Lc为标定距离,m;Abb为黑体腔口面积,m2P(λ, Tc)为黑体的光谱辐亮度,W/(μm·sr·m2);Tc为黑体温度,K。

    按式(3)计算红外辐射强度:

    $$I = \frac{1}{{{\tau _{\rm{a}}}}}\int_{{\lambda _{\min }}}^{{\lambda _{\max }}} {\frac{{\Delta {V_{\rm{m}}}\left( \lambda \right) \cdot {{\left( {{L_{{\rm{ob}}}}} \right)}^2}}}{{K\left( \lambda \right)}}} {\rm{d}}\lambda $$ (3)

    式中:I为辐射强度,W/sr;ΔVm(λ)为测试电压,V;Lob为测试距离,m;λminλmax分别为波段的波长下限和上限,μm;τa为大气透过率(采用Lowtran大气模型根据实时气象条件计算)。

    热像仪测试时,首先采用标准黑体源对热像仪进行标定,得到热像仪的辐射响应定标文件(定期进行);采用热像仪对待测对象进行测试,得到飞机在不同方向上的温度分布图像,根据测试距离、视场角分辨率及图像像元数计算特征辐射面积S

    $$ \mathit{S}{\rm{ = }}{\mathit{n}_{\rm{T}}}{\rm{\cdot}}\mathit{\gamma }{\rm{\cdot}}\mathit{d} $$ (4)

    式中:nT为视场内温度为某特定值或特定范围内的像元数目;γ为仪器角分辨率,rad/像元;d为测试距离,m。可根据需要,提取热像中目标的温度分布特征和目标图像特征。

    1)光谱辐射计测试结果(迎头)

    按照上述测试方法和数据处理方法,对光谱辐射计测试数据进行处理,得到飞机在中长波红外的辐射强度随时间的关系如图 2所示。

    图  2  迎头测试中长波红外辐射强度随时间的关系图
    Figure  2.  Plot of middle-long wave infrared radiation intensity over time in head-on test

    图 2可知,测试时,3~5 μm的光谱辐射强度和8~14 μm的光谱辐射强度值均较低,这是由于测试时,机身遮挡,导致尾焰的辐射强度大部分被遮挡。

    2)中红外热像仪测试结果(迎头)

    按照1.3.2测试方法和数据处理方法,对中红外热像仪测试数据进行处理,得到飞机在中红外的特征辐射面积时间变化关系如图 3所示。

    图  3  中波红外特征辐射面积随时间的变化关系图
    Figure  3.  Middle wave infrared characteristic radiation area over time

    图 3可知,中红外热像仪测试得到辐射面积最大为3.68 m2,且辐射面积随时间变化。这是由两种原因造成的,第一是飞行员操作时,不可能保证飞机发动机一直处于同一种工作状态,而是在某一工作状态附近波动;第二是由于气候原因,由于风速、风向等时刻变化,导致发动机尾焰在与大气环境传热传质过程中一直处于变化状态,从而导致特征辐射面积发生变化。

    3)长波红外热像仪测试结果(迎头)

    按照1.3.2测试方法和数据处理方法,对长波红外热像仪测试数据进行处理,得到飞机在长波红外的辐射面积随时间变化关系如图 4所示。

    图  4  长波红外辐射面积随时间的变化关系图
    Figure  4.  Long wave infrared characteristic radiation area over time

    图 4可知,长波红外热像仪测试得飞机的最大红外特征辐射面积约为5.4 m2,比中红外辐射面积高,这也是由于飞机发动机尾焰的大部分红外辐射被飞机机身遮挡,而机身蒙皮在长波红外的辐射特征比中红外的辐射特征明显。

    用同样的方式测试飞机在同样工作状态下,正测向、尾向的红外辐射特征。将测试数据用同样的方式处理,得到测试结果如表 1所示。

    表  1  飞机红外辐射特征测试结果汇总
    Table  1.  Summary of aircraft radiation characteristics test results
    Test direction and angle Wave length Radiation intensity/(W/Sr) Radiation area/m2
     Head-on 0°  3 to 5 μm 50.00 3.68
     8 to 14 μm 50.00 5.40
     Lateral 90°  3 to 5 μm 68.00 25.90
     8 to 14 μm 150.00 12.53
     Stern 180°  3 to 5 μm 140.00 8.85
     8 to 14 μm 80.00 1.05
    下载: 导出CSV 
    | 显示表格

    测试数据可得如下结论:①飞机正侧向的中长波红外辐射面积比迎头和尾后都高,这是由于正侧向时,飞机最大截面与红外热像仪视场垂直,导致红外辐射面积最大;②飞机尾后的中长波红外辐射强度远远高于正侧向和迎头,尤其是中红外辐射强度达到最高,说明发动机工作时,尾焰和尾喷管能显著提高飞机的红外辐射特征,但是辐射面积较小;③由于飞机机身的遮挡作用,飞机的红外辐射强度和面积均最小。

    面源红外干扰弹投放后在载机附近迅速扩散开来形成红外干扰云团,其与被保护载机的红外图像相似,或改变载机的红外图像特征,欺骗红外成像制导导弹,继而诱使红外成像制导导弹偏离被保护的载机。面源红外干扰弹对抗红外成像制导导弹,各个阶段可以采用不同的方式进行干扰[7]

    目标搜索阶段,导弹距离目标通常很远,目标机形成的红外图像很小,处于点目标阶段,当面源红外干扰弹连续投放后,在真目标附近形成大面积红外辐射云团,掩盖目标的红外辐射特征,使红外成像制导导弹导引头无法锁定真目标,面源红外干扰弹起到“隐真示假”的作用。

    目标跟踪阶段初期,弹目距离逐渐缩短,目标形成的红外图像逐渐变大,且逐渐显示目标的外形特征,此时,红外成像制导导弹使用形心跟踪或是质心跟踪方式跟踪目标。当连续投放面源红外干扰弹后,在目标附近形成大面积红外辐射云团,其红外特征与目标相似,并与目标融合在一起形成共同的目标信息,甚至完全掩盖目标的红外辐射特征,从而改变导弹视场内的目标红外辐射特征,常用的灰度、面积、长宽比、圆度等识别特征均发生较大变化,制导系统难以识别出真目标,此时,实际目标的特征或运动参数将以不稳定或“非目标”的方式变化(如机动逃逸),而面源红外干扰弹的特征保持稳定(持续燃烧或连续投放),此时,成像导弹的识别系统将会锁定假目标,而达到干扰目的。

    目标跟踪阶段后期,弹目距离很近,目标在导引头视场内外形特征清楚,导引头可根据目标的外形特征(面积、长宽比、圆度等)对目标进行跟踪。此时,连续投放面源红外干扰弹后,面源红外干扰弹形成大面积红外辐射云团,与目标红外辐射特征融合,增大了整个红外辐射云团的辐射面积,改变目标的外形特征,增大导引头识别算法的运算量和识别难度,使其难以识别真目标,导致成像导引头无法通过目标的面目标特征识别出目标,从而有效降低其命中目标概率。

    点源红外干扰弹发射后形成单个热点目标,连续投放后形成多个点目标,通过质心干扰的方式诱骗红外制导导引头哦。由于点源红外干扰弹能量高,远大于飞机的红外辐射强度,在对抗早期第一代、第二代红外制导导引头时有效;随着具有辐射强度阈值鉴别能力的第三代、第四代红外制导导引头的装备,点源红外干扰弹由于能量太高,且干扰源数量少,干扰效能不高的缺点越来越明显。因此,点源红外干扰弹逐步被多点源红外干扰弹取代。

    多点源红外干扰弹发射后形成多个分散的点源红外干扰弹,连续投放后形成多个点状发热体。采用多发齐射或多方位齐射时,可迅速在一定空域形成红外高辐射区,在导引头瞬时视场内形成持续的多个干扰源,将目标信号淹没,且多点源红外干扰弹的辐射能量比点源红外干扰弹的小,略高于飞机,导引头无法通过强度阈值鉴别滤除干扰,导引头必须处理多组脉冲信号,降低了其检测目标的概率,红外导引头即使启动了抗干扰措施,但因探测器的噪声几何级数增大,而难以提取有效的制导信号,从而起到保护载机的作用[8]

    根据飞机发动机工作时,飞机不同方向上的红外辐射特征数据,以及多点源红外干扰弹、面源红外干扰弹的特点,可分析出飞机在面临不同方向成像红外导弹导引头时红外干扰弹的使用策略[9]

    1)当来袭红外制导导弹从尾后攻击飞机时,开始导弹距飞机较远,飞机在红外导引头中显示为一个热点,此时采用多点源红外干扰弹,以质心干扰的方式诱骗红外导引头;随着来袭导弹与飞机距离缩短,飞机在导引头中面积逐渐增大,采用面源红外干扰弹,其红外辐射云团与飞机融合,改变目标的红外辐射特征和在导引头视角下的面目标特征,使导引头分辨不出目标,从而形成有效干扰。多点源红外干扰弹和面源红外干扰弹组合使用,两者结合可有效干扰红外导引头。

    2)当来袭红外制导导弹侧向攻击飞机时,由于飞机在红外导引头中显示的面积较大,且能量较高,此时可采用面源红外干扰弹有效掩盖目标的红外辐射特征,干扰来袭导弹导引头。

    3)当来袭红外制导导弹迎头攻击飞机时,由于此时飞机在红外导引头中显示的面积和能量均很低,此时采用多点源红外干扰弹和面源红外干扰弹组合使用,通过多点源红外干扰弹的质心干扰,形成假目标,结合面源红外干扰弹的大面积特征,掩盖目标的红外辐射特征,隐藏真实目标特征,点和面结合,达到“隐真示假”的效果,可有效干扰红外制导导弹导引头。

    本文以飞机为研究对象,采用光谱辐射计、中长波红外热像仪测试了飞机发动机工作时,飞机迎头、正侧向、尾向3个不同方向上的红外辐射特征,根据红外辐射特征,结合多点源红外干扰弹、面源红外干扰弹的特点,分析了飞机在面临不同方向来袭红外制导导弹时干扰弹的投放策略。当来袭导弹从尾后攻击时,远距时采用多点源红外干扰弹、中近距时采用面源红外干扰弹;侧向攻击时,采用面源红外干扰弹;迎头攻击时,采用点源、面源组合使用,可形成有效干扰。

  • 图  1   动磁式单活塞压缩机结构示意图(a)和剖面图(b)

    Figure  1.   Schematic diagram (a) and cross-sectional view (b) of the moving magnet single-piston compressor

    图  2   单活塞压缩机振动示意图

    Figure  2.   Vibration diagram of a single-piston compressor

    图  3   SX030压缩机用动力吸振器爆炸图(a),装配图(b)

    Figure  3.   Exploded view of the dynamic vibration absorber for SX030 compressor (a), assembly view (b)

    图  4   K527制冷机用动力吸振器爆炸图(a),实物图(b)

    Figure  4.   Exploded view (a), physical view (b) of the dynamic vibration absorber for K527 cryocooler

    图  5   Sunpower制冷机与动力吸振器装配实图

    Figure  5.   The actual assembly diagram of the Sunpower refrigerator and the dynamic vibration absorber

    图  6   装配动力吸振器的单活塞线性压缩机

    Figure  6.   Single-piston linear compressor equipped with dynamic vibration absorber

    图  7   振动模型

    Figure  7.   Vibration model

    图  8   压缩机使用动力吸振器前(a)后(b)振动曲线

    Figure  8.   Vibration curves of compressor without (a) and with (b) dynamic vibration absorber

    图  9   压缩机幅频特性曲线

    Figure  9.   Compressor amplitude-frequency characteristic curves

    图  10   不同μ值对应的压缩机幅频特性Matlab仿真曲线

    Figure  10.   Matlab simulation curves of compressor amplitude-frequency characteristics corresponding to different μ values

    图  11   不同z值对应的压缩机幅频特性Matlab仿真曲线

    Figure  11.   Matlab simulation curves of compressor amplitude-frequency characteristics corresponding to different z values

    图  12   RICOR公司外部柔性板弹簧隔振器(a)、螺旋弹簧隔振器(b)

    Figure  12.   RICOR's external flexible plate spring vibration isolator (a), coil spring vibration isolator (b)

    图  13   不同ξ2值对应的压缩机幅频特性Matlab仿真曲线

    Figure  13.   Matlab simulation curves of compressor amplitude-frequency characteristics corresponding to different ξ2 values

    表  1   不同类型斯特林制冷机技术特点[1]

    Table  1   Technical characteristics of different types of Stirlingcryocoolers

    Parameter Integral rotary Split linear
    single piston
    Split linear dual
    opposed piston
    Cooling time √√     √√√     √√√
    Weight √√√     √√     √√
    Vibration √√√     √     √√
    Integration √√√     √     √√
    MTTF(Mean time to failure) √√     √√√     √√√
    下载: 导出CSV

    表  2   K527和SX030压缩机相关参数

    Table  2   Related parameters of K527 and SX030 compressors

    Manufacturer/Cryocooler Physical dimension/mm Weight/g Input power/W Vibration/N
    RICOR/K527 63×33.5 200 3.5 11
    RICOR/K527+ Vibration Mount 63×33.5 220 3.5 2
    RICOR/K527+ Vibration Mount+DVA 93×33.5 300 3.5 0.03
    AIM/SX030 61×33 280 3.3 >8
    AIM/SX030+ DVA 75×33 380 3.3 <0.17
    下载: 导出CSV
  • [1]

    Katz A, Segal V, Filis A, et al. RICOR's Cryocoolers development and optimization for HOT IR detectors[C]//Proc. of SPIE, Defense + Security, International Society for Optics and Photonics, 2012, 8353: 83531U.

    [2] 杨宝玉, 吴亦农. 空间机械制冷机的振动控制研究进展[C]//第八届全国低温工程大会暨中国航天低温专业信息网2007年度学术交流会论文集, 2007: 6.

    YANG Baoyu, WU Yinong. Research progress of vibration control of space mechanical refrigerator[C]//The 8th National Cryogenic Engineering Conference and China Aerospace Cryogenic Professional Information Network 2007 Academic Exchange Conference, 2007: 6.

    [3]

    RühlichI, Mai M, Rosenhagen C, et al. Compact high efficiency linear cryocooler in single piston moving magnet design for HOT detectors[C]//SPIE Defense, Security, and Sensing, 2012, 8353: 83531T.

    [4]

    Veprik A, Zechtzer S, Pundak N. Split Stirling linear cryogenic cooler for a new generation of high temperature infrared imagers[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2010: 7660.

    [5] 金涛, 郑水英, 谢洁飞, 等. 直线压缩机的研究现状与发展[J]. 中国机械工程, 2004, 15(8): 1405-1409. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200415023.htm

    JIN Tao, ZHENG Shuiying, XIE Jiefei. Research status and development of linear compressors[J]. China Mechanical Engineering, 2004, 15(8): 1405-1409. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200415023.htm

    [6] 邰晓亮. 动磁式直线电机驱动微小型活塞压缩机理论分析及实验研究[D]. 上海: 上海交通大学, 2009.

    TAI Xiaoliang. Theoretical analysis and experimental study of a miniature piston compressor driven by a moving magnet linear motor[D]. Shanghai: Shanghai Jiaotong University, 2009.

    [7]

    Veprik A, Vilenchik H, Riabzev S, et al. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers[C]//Proc. Of SPIE, 2007, 6542: 65422F.

    [8]

    Sergey Riabzev, Ilan Nachman, Eli Levin, et al. RICOR K527 highly reliable linear cooler: applications and model overview[C]//Proc. of SPIE, 2017, 1080: G1-G17.

    [9]

    Sunpower. Cryocoolers Overview[EB/OL]. [2020-12-28]. https://www.sunpowerinc.com/products/stirling-cryocoolers.

    [10]

    Veprik A M, Babitsky V I, Pundak N, et al. Vibration control of linear split Stirling cryogenic cooler for airborne infrared application[J]. Shock and Vibration, 2000, 7(6): 363-379. DOI: 10.1155/2000/962193

    [11] 孙述泽, 闫春杰. 动力吸振器在斯特林制冷机振动控制中的应用[J]. 低温与超导, 2011, 39(6): 13-15, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201106004.htm

    SUN Shuze, YAN Chunjie. Application of dynamic vibration absorber in vibration control of Stirling refrigerator[J]. Cryogenics and Superconductivity, 2011, 39(6): 13-15, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201106004.htm

    [12]

    Kopasakis, George, Cairelli, et al. Adaptive vibration reduction controls for a cryocooler with a passive balancer[J]. AIP Conference Proceedings, 2002, 613(1): 1605. http://hdl.handle.net/2060/20020005788

    [13]

    Ormondroyd J, Den Hartog J P. The theory of the dynamic vibration absorber[J]. Transaction of ASME, 1928, 50: 241. http://ci.nii.ac.jp/naid/10007651142

    [14]

    Veprik A, Zechtzer S, Pundak N, et al. Low vibration microminiature split Stirling cryogenic cooler for infrared aerospace applications[C]// AIP Conference Proceedings, 2011, 1434: 1473-1480.

  • 期刊类型引用(2)

    1. 高程,唐超,童安炀,王文剑. 基于CNN和LSTM混合模型的红外人体行为识别. 合肥学院学报(综合版). 2023(05): 77-85 . 百度学术
    2. 赵普,武一. 面向社区医疗的跌倒检测算法. 中国医学物理学杂志. 2023(12): 1486-1493 . 百度学术

    其他类型引用(12)

图(13)  /  表(2)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  86
  • PDF下载量:  56
  • 被引次数: 14
出版历程
  • 收稿日期:  2020-12-27
  • 修回日期:  2021-08-10
  • 刊出日期:  2021-10-19

目录

/

返回文章
返回
x 关闭 永久关闭

尊敬的专家、作者、读者:

端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

感谢您对本刊的支持!

《红外技术》编辑部

2024年6月6日