Infrared Thermography Low-zero Insulator Identification Based on GWO-SVM
-
摘要: 为了准确识别电网中的低零值绝缘子,提高劣化绝缘子诊断的准确率,提出了一种使用灰狼算法优化(grey wolf optimizer, GWO)与二进制支持向量机(support vector machine, SVM)分类器相结合的模型,对红外图像中的低零值绝缘子进行自动检测。首先对绝缘子红外图像进行增强,利用Ostu算法对红外图像进行分割,并对得到的二值图像进行倾斜角度矫正和切割,提取绝缘子串的有效区域,然后将图像特征用于向量机的分类识别。实验结果表明,灰狼算法优化支持向量机比常用的网格搜索算法(grid search, GS)、粒子群优化算法(particle swarm optimization, PSO)等得到的分类模型能更准确、有效地对低零值绝缘子进行识别,且准确率更高。Abstract: The accuracy of the diagnosis of degraded insulators is improved to accurately identify low-zero-value insulators in the power grid. A pair of insulator infrared images and a gray wolf optimizer (GWO) optimized binary support vector machine (SVM) classifier is proposed. Low-zero insulators are detected automatically. First, the infrared image of the insulator is enhanced; then, the infrared image is segmented using the Ostu algorithm; and the obtained binary image is subjected to tilt angle correction and cutting to extract the effective region of the insulator string. Finally, the image features are applied to the classification and recognition of vector machines. The experimental results show that the GWO-SVM can identify the low-zero insulator more accurately and effectively than the commonly used grid search (GS) and particle swarm optimization (PSO). Its rate is higher.
-
Keywords:
- insulator /
- infrared imaging /
- support vector machine /
- grey wolf algorithm
-
-
表 1 参数寻优方法对比
Table 1 Comparison of parameter optimization methods
Parameter optimization method Accuracy/% Optimization time/s Seeking efficiency/(s/time) Grid-search 91.523 12.693 0.2487 Random-search 92.267 8.159 0.3156 Grey wolf optimizer 95.246 6.251 0.1145 -
[1] Lopes F V, Dantas K M, Silva K M, et al. Accurate two-terminal transmission line fault location using traveling waves[J]. IEEE Transactions on Power Delivery, 2018, 33(2): 873-880. DOI: 10.1109/TPWRD.2017.2711262
[2] Costa F B, Monti A, Lopes F V, et al. Two-terminal traveling wave-based transmission line protection[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1382-1393. DOI: 10.1109/TPWRD.2016.2574900
[3] CHENG Li, ZHANG Zhonghao, ZHANG Fuzeng, et al. Study on electrical properties and field solutions of water related heating of composite insulators on 500 kV AC transmission lines[C]//Electrical Insulation and Dielectric Phenomena IEEE, 2015: DOI: 10.1109/CEIDP. 2015.7352019.
[4] 吕玉坤, 赵伟萍, 庞广陆, 等. 典型伞型瓷及复合绝缘子积污特性模拟研究[J]. 电工技术学报, 2018, 33(1): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201801024.htm LYU Yukun, ZHAO Weiping, PANG Guanglu, et al. Simulation of contamination deposition on typical shed porcelain and composite insulators[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201801024.htm
[5] 律方成, 刘宏宇, 汪佛池, 等. 高速气流条件下污秽颗粒在复合绝缘子表面的沉积判据[J]. 电工技术学报, 2017, 32(1): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201701023.htm LYU Fangcheng, LIU Hongyu, WANG Fochi, et al. Deposit criterion of pollution particles on composite insulators surface under high speed aerosol[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201701023.htm
[6] 司马文霞, 施健, 袁涛, 等. 特高压复合绝缘子电场计算及基于神经网络遗传算法的均压环结构优化设计[J]. 高电压技术, 2012, 38(2): 257-265. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201202002.htm SIMA Wenxia, SHI Jian, YUAN Tao, et al. Electric field calculation of ultra high voltage composite insulator and optimization design of corona ring structure based on neural network and genetic algorithm[J]. High Voltage Engineering, 2012, 38(2) : 257-265. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201202002.htm
[7] 吴晓辉, 刘炯, 梁永春, 等. 支持向量机在电力变压器故障诊断中的应用[J]. 西安交通大学学报, 2007, 41(6): 457-457. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT200706020.htm WU Xiaohui, LIU Jiong, LIANG Yongchun, et al. Application of support vector machine in transformer fault diagnosis[J]. Journal of Xi'an Jiaotong University, 2007, 41(6): 457-457. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT200706020.htm
[8] 薛浩然, 张珂珩, 李斌, 等. 基于布谷鸟算法和支持向量机的变压器故障诊断[J]. 电力系统保护与控制, 2015, 43(8): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201508002.htm XUE Haoran, ZHANG Kehang, LI Bin, et al. Fault diagnosis of transformer based on the cuckoo search and support vector machine[J]. Power System Protection and Control, 2015, 43(8): 8-13 https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201508002.htm
[9] 张青, 赵黎明, 焦尚彬. 基于PSO-SVM的高压绝缘子污秽等级评定[J]. 高压电器, 2008, 44(6): 562-565. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ200806023.htm ZHANG Qing, ZHAO Liming, JIAO Shangbin. Assessment of contamination grades for high voltage insulator based on PSO-SVM[J]. High Voltage Apparatus, 2008, 44(6): 562-565. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ200806023.htm
[10] 刘颖, 陈谨女. 自适应中值滤波算法在图像处理中的应用[J]. 物联网技术, 2013, 3(3): 51-52. https://www.cnki.com.cn/Article/CJFDTOTAL-WLWJ201303022.htm LIU Ying, CHEN Jinnv. Application of adaptive median filtering algorithm in image processing[J]. Internet of Things Technologies, 2013, 3(3): 51-52. https://www.cnki.com.cn/Article/CJFDTOTAL-WLWJ201303022.htm
[11] 肖蕾, 何坤, 周激流, 等. 改进自适应中值滤波的图像去噪[J]. 激光杂志, 2009(2): 44-46. DOI: 10.3969/j.issn.0253-2743.2009.02.019 XIAO Lei, HE Kun, ZHOU Jiliu, et al. Image noise removal on improvement adaptive medium filter[J]. Laser Journal, 2009(2): 44-46. DOI: 10.3969/j.issn.0253-2743.2009.02.019
[12] 宁春玉, 赵春华. 自适应中值滤波算法滤除医学图像脉冲噪声[J]. 计算机工程与应用, 2012, 48(24): 153-156. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201224034.htm NING Chunyu, ZHAO Chunhua. Removing impulse noise in medical images using adaptive median filtering algorithm[J]. Computer Engineering and Applications, 2012, 48(24): 153-156. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201224034.htm
[13] 杨新华, 吕意飞. 差分算子和改进Otsu算法结合的灰度图像阈值分割研究与实现[J]. 仪表技术与传感器, 2015(3): 32. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201503032.htm YANG Xinhua, LV Yifei. Research and implementation of grayscale image threshold segmentation based on difference operators combined with instrument technique and sensor improved Otsu algorithm[J]. Instrument Technique and Sensor, 2015(3): 32. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS201503032.htm
[14] 方梓涵, 张焕明, 朱家明. 基于RADON逆变换对CT系统参数标定及成像分析[J]. 哈尔滨师范大学自然科学学报, 2018(2): 32. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBY201802005.htm FANG Zihan, ZHANG Huanming, ZHU Jiaming. Parameter calibration and imaging analysis of CT system based on RADON inverse transform[J]. Natural Science Journal of Harbin Normal University, 2018(2): 32. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBY201802005.htm
[15] 杨凯, 张认成, 杨建红, 等. 基于分形维数和支持向量机的串联电弧故障诊断方法[J]. 电工技术学报, 2016, 31(2): 70-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201602011.htm YANG Kai, ZHANG Rencheng, YANG Jianhong, et al. Series are fault diagnostic method based on fractal dimension and support vector machine[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 70-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201602011.htm
[16] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey Wolf Optimizer[J]. Advances in Engineering Solfware, 2014, 69(3): 46-61. http://www.sciencedirect.com/science/article/pii/s0965997813001853