一种提高FPGA片间通信稳定性的校验协议研究

Verification Protocol for Improving Communication Stability Between FPGAs

  • 摘要: 随着FPGA(Field Programmable Gate Array)在大型系统中得到越来越广泛的应用,单片FPGA往往难以胜任全部工作,多片FPGA之间进行高速稳定通信成为了该领域的一个研究热点。为此设计了一种基于低压差分信号(low voltage differential signal,LVDS)可用于FPGA片间高速稳定通信的校验协议,该协议在常规LVDS通信的基础上进行多轮多路校验,以提高传输可靠性。基于该协议,搭建了一套由两片Xilinx 7系列FPGA构成的9通道LVDS通信测试系统。其中1个通道用于同步时钟,另外8通道用于校验和通信。经过长时间高低温测试,在保证单路传输速率达1.2 Gb/s的情况下,相对于常规LVDS通信,误码率大大降低。

     

    Abstract: As field-programmable gate arrays(FPGAs) become increasingly used in large-scale systems, it is often difficult for a single-chip FPGA to perform all the tasks required. High-speed and stable communication between multiple FPGAs has become a focus of research in this field. For this purpose, a verification protocol based on low-voltage differential signaling (LVDS) that can be used for high-speed and stable communication between FPGA chips was designed. This protocol performs multiple rounds of multipath verification based on conventional LVDS communication to improve transmission reliability. Based on this protocol, a nine-channel LVDS communication test system consisting of two Xilinx 7 series FPGAs was built. One channel was used to synchronize the clock, and the other eight channels were used for checksum communication. After a long period of high- and low-temperature tests, the bit error rate was greatly reduced compared with conventional LVDS communications while ensuring a single transmission rate of 1.2 Gb/s.

     

/

返回文章
返回