Review of Research and Application of Terahertz Imaging Technology
-
摘要: 太赫兹波(terahertz waves)位于红外波段与微波波段之间,相比其他波段具有高透射性、低能量性、相干性、指纹光谱以及瞬态性等特点。随着太赫兹成像技术在空间通信、雷达探测、航天航空以及生物医疗等领域的广泛应用,已经表现出传统成像技术(如可见光、超声波和X射线成像)无法比拟的优势。本文首先对太赫兹时域光谱(THz-TDS)成像技术以及室温(非制冷)微测辐射热计太赫兹成像技术的发展现状进行介绍,再介绍太赫兹成像技术的典型应用,最后指出太赫兹成像技术在发展中存在的限制因素并给出合理的建议。Abstract: Terahertz (THz) waves are located between the infrared and microwave bands. Compared with other bands, they have the characteristics of high transmission, low energy, coherence and transient nature. With the widespread application of terahertz imaging technology in the fields of space communication, radar detection, aerospace and biomedicine, it has been shown that THz imaging offers advantages over traditional imaging technologies (such as ultrasonic imaging and X-ray imaging). This paper first introduces the development status of THz time-domain spectroscopy (THz-TDS) imaging technology and room temperature (uncooled) microbolometer THz imaging technology. Subsequently, typical applications of THz imaging technology are presented. Finally, the limiting factors of THz imaging technology are discussed.
-
Keywords:
- terahertz /
- time-domain spectroscopy /
- microbolometer /
- imaging technology
-
0. 引言
碳纤维增强复合材料(Carbon Fiber Reinforced Polymer, CFRP)是以树脂为基体,碳纤维作为增强材料的一种新型材料,其具有重量轻、比强度高、热膨胀系数小、耐腐蚀性及抗蠕变性能好等优良性能[1]。因此,CFRP被广泛应用于航空航天、新能源、汽车制造以及体育运动等诸多领域。然而,CFRP层合结构在制备过程中易发生脱粘且由其制造的部件多工作于恶劣工况下而容易受到损伤。所以为保证人员和设备安全,必须要对出厂产品和设备中使用的相关部件进行无损检测,以及时检出缺陷避免更严重事故的发生。
相比于传统的超声、射线、涡流、磁粉等无损检测技术,主动式红外热成像无损检测方法具有速度快、检测范围大、无需耦合以及使用安全等优点,特别适用于整体结构的无损检测[2]。该方法通常使用可调制热源对被测物体进行加热,并利用红外热像仪观察物体表面的温度分布情况。被测物体中存在的缺陷(如脱粘)会影响内部热流传递,导致缺陷区域与正常区域表面温度分布差异。这种差异可被红外热像仪捕捉到,再利用图像处理手段将缺陷提取出来,实现缺陷检测可视化。但是红外图像存在对比度差、边缘模糊的缺点,不利于准确表征缺陷。所以,对检测获得的红外图像的缺陷特征提取也就成为红外无损检测的关键技术之一[3]。杨晓利用典型瞬态热响应与ICA(Independent Component Analysis)混叠向量的相似性设计了基于分类器的重构图像算法,可以快速提取缺陷特征[4]。朱笑等提出一种多尺度八方向边缘检测图像分割算法,提高了CFRP冲击损伤区域弱边缘的检测能力和缺陷检测精度[5]。Feng提出一种结合热像信号重构和自动种子区域生长算法的CFRP红外图像处理方法,该方法可以抑制光照不均匀造成的缺陷误检率[6]。Sreeshan K.等提出一种基于Gabor滤波的分水岭算法,提高了CFRP层合板脱粘缺陷的检测精度[7]。但是上述缺陷提取方法的原理是提升边缘检测能力或是基于区域连通性对缺陷进行分割,可能造成缺陷模糊边缘的误检测,引入干扰信息,进而影响后续缺陷的定量分析。
本文在分析线激光扫描红外热成像检测原理的基础上,针对CFRP常见类型缺陷的红外图像边缘模糊的问题,提出一种结合直方图均衡和直觉模糊C均值聚类算法的缺陷分割方法,该方法基于模糊数学理论,更适合描述缺陷边缘与背景间的“模糊性”,从而能更准确地分离缺陷边缘与背景,达到对缺陷边缘准确提取的目的。
1. 线激光扫描热成像原理
针对CFRP的红外热成像无损检测通常利用闪光灯或卤素灯进行加热。但是这种加热方式要求热源近距离加热被测物体,否则会因为被测物体未受到充分的热能激励而影响检测效果,所以这种方法难以实现远距离无损检测。虽然可以通过在灯周围配备聚光反射器来改善这一缺点[8],但是提升效果有限且增加了检测成本。
激光准直性好、能量密度高、功率可调可控且扩散衰减比传统的光学器件小得多。所以,对于远距离目标的检测需求,激光可作为理想的加热源。同时考虑到CFRP热传导的各向异性,为避免激光定点加热方式所造成的不均匀加热,最终采用线激光扫描加热的激励方式。图 1是线激光扫描检测原理示意图,该方式在加热过程中的热输入Q0可以通过以下公式近似获得:
$$ {Q_0} = {Q_{{\text{lc}}}}\exp \left[ { - \frac{{{{\left( {x - vt + D/2} \right)}^2}}}{{{D^2}}}} \right] $$ (1) 式中:Q0表示t时刻x处的输入能量;Qlc是激光中心的能量;激光光斑宽度为D;v是被测物体与加热源之间的相对扫描速度。Masashi等人通过实验比较了激光扫描热成像方法和传统的闪光灯加热方法的温度变化和相位变化,最终得出结论:在热输入相同的情况下,二者的检测能力相似[9]。原因在于假如将激光扫描过的区域沿扫描方向划分为无数小段,则激光在扫描某一小段时可忽略扫描时间的先后差异,近似认为是同时加热,且在这一过程中积累了与闪光灯加热方式相同的激励能量。
热量的传递方式主要有3种:热传导、热对流、热辐射。由于CFRP可能存在的缺陷对材料的热传导影响最大,所以红外无损检测的热力学分析以热传导分析为主[10]。对于任一材料,其内部的热量传递可以用热扩散方程描述:
$$ {k_x}\frac{{{\partial ^2}T}}{{\partial {x^2}}} + {k_y}\frac{{{\partial ^2}T}}{{\partial {y^2}}} + {k_z}\frac{{{\partial ^2}T}}{{\partial {z^2}}} + Q = \rho c\frac{{\partial T}}{{\partial t}} $$ (2) 式中:kx, ky, kz分别为材料在x, y, z方向的热导率,W/(m⋅K);c为材料比热容,J/(kg⋅K);ρ为材料密度,kg/m3;Q为材料内部热源,W/m2。
对于要分析的平板型碳纤维复合材料,其内部不存在热源且其长度、宽度远大于厚度,所以可按照半无限大板状结构分析[11]。因此忽略热量在x-y平面内的传递,仅考虑z方向上的热量传递,将上述三维热扩散方程简化为:
$$ {k_z}\frac{{{\partial ^2}T}}{{\partial {z^2}}} = \rho c\frac{{\partial T}}{{\partial t}} $$ (3) 被测物体的初始条件和边界条件分别为:
$$ T(z, 0)=T_{0} $$ (4) $$ - {k_z}\frac{{\partial T}}{{\partial z}}\left| {_{z = 0}} \right. = q\left| {_{z = 0}} \right. = {Q_0} $$ (5) 对上式两端进行拉氏变换,将温度函数T(z, t)的拉氏变换记为Θ(z, s),可得:
$$ s\mathit{\Theta} \left( {z,s} \right) - T\left( {z,0} \right) = \frac{{{k_z}}}{{\rho c}} \cdot \frac{{{{\text{d}}^2}\mathit{\Theta} \left( {z,s} \right)}}{{{\text{d}}{z^2}}} $$ (6) 求解得到上述微分方程的通解,结合初始条件和边界条件可得出解为:
$$ \mathit{\Theta} (z,s) = \frac{{{Q_0}}}{\lambda } \cdot \sqrt {\frac{{{k_z}}}{{\rho cs}}} {{\text{e}}^{ - z\sqrt {\frac{{\rho cs}}{{{k_z}}}} }} + \frac{{{T_0}}}{s} $$ (7) 对上式进行拉氏反变换,可得到材料在z方向上任意位置的温度变化:
$$ T(z,t) = {T_0} + \frac{{{Q_0}}}{{\sqrt {{\text{π }}\rho c{k_z}t} }}{{\text{e}}^{\frac{{ - \rho c{z^2}}}{{4{k_z}t}}}} $$ (8) 令z=0,可得到材料表面温度随时间变化的情况,即:
$$ T(0,t) = {T_0} + \frac{{{Q_0}}}{{\sqrt {{\pi}\rho c{k_z}t} }} $$ (9) 如图 1(a)所示,假设材料内部深度h处存在脱粘缺陷,当热量传递到此处时,一部分热量继续传递,另一部分热量因为热扩散率发生突变,会在缺陷表面和材料表面发生多次反射,直至衰减。因此,对于存在缺陷的区域,其表面温度场由两部分叠加而成:即无缺陷时对应的随时间衰减的表面温度和缺陷界面与材料表面之间反射叠加的热波所引起的温度变化[12]。所以缺陷表面的温度为:
$$ T(0, t)=T_0+\frac{Q_0}{\sqrt{\pi \rho c k_z t}}\left(1+\mathrm{e}^{\frac{-\rho c h^2}{k_z t}}\right)$$ (10) 正常区域和缺陷区域的表面温差为:
$$ \Delta T = T(0,t) - {T_0} = \frac{{{Q_0}}}{{\sqrt {{\pi}\rho c{k_z}t} }}(1 + {{\text{e}}^{\frac{{ - \rho c{h^2}}}{{{k_z}t}}}}) $$ (11) 上式说明在同等加热条件下,缺陷区域和正常区域所对应的表面温度场存在差异。根据普朗克黑体辐射定律,自然界中任何温度高于绝对零度的物体都在向外界辐射电磁波即热辐射现象。而且热辐射中的红外波段具有很强的温度效应,会携带辐射体的温度信息[13]。红外热像仪正是通过探测目标的红外辐射能量分布,从而获得其表面的温度场分布[14]。之后利用一定的图像处理技术对红外热像仪采集到的包含缺陷信息的红外图像进行缺陷提取,来实现缺陷的可视化检测。
2. 试件制备及实验过程
2.1 实验试件制备
本实验所使用的CFRP试件为东丽工业公司生产的T800型碳纤维单向增强层合板,如图 2所示,采用单向铺层方式,尺寸为238 mm×167 mm×2.4 mm。其热性能如表 1。在图 2(a)中,试件上存在圆盘形平底孔和矩形平底孔的人工缺陷,分别模拟CFRP常见的脱粘缺陷和纤维断裂缺陷。其中一、二行圆盘形孔直径分别为3 mm和5 mm,深度从0.5 mm开始按照0.5 mm的间隔依次加深,直至2 mm;三、四行矩形孔底面尺寸为10 mm×1 mm,长边分别与碳纤维排布方向平行和垂直,深度变化与圆形孔一致。
表 1 T800型CFRP热特性Table 1. Thermal properties of T800 CFRPProperties Parameters Density ρ/(kg/m3) 1536 Specific heat capacity c/(J/(kg·K)) 865 Thermal conductivity k/(W/(m·K)) 4.2
(Along fiber direction)
0.56
(Perpendicular to fiber direction)由于移动平台在启动和停止时不能保持匀速运动,所以如图 2(a)所示,本次实验仅在各类型缺陷中选择位于扫描加热区域中部的缺陷作为研究对象,以保证缺陷可被匀速扫描加热。图 2(b)显示了选中的4个深度均为1 mm的缺陷并分别命名为1~4号缺陷。
2.2 实验过程
如图 3所示,本文搭建了反射式激光扫描热成像无损检测系统对试件进行检测,该系统主要由红外热像仪、激光发生器、光学系统、上位机、三维移动平台及试件组成。
本实验选用锐科RFL-A500D型半导体激光器作为激励源,其中心波长为915 nm,光束发散半角为0.22 rad,最大输出功率500 W。同时为减少自然光及其他光源对红外热成像的干扰,实验全程需保持无光状态。为兼顾试件安全与检测效果,经反复试验将激光功率设为13 W、扫描速度设为50 mm/s。
实验时,激光发生器发出光斑直径约为4 mm的激光束,经光学系统转换后在距激光源2.4 m处的试件表面形成长度约为45 mm的线形激光。启动三维移动平台,按照预设轨迹移动对试件中的4类缺陷分别进行扫描加热同时使用红外热像仪全程采集样品表面温度场变化。每类缺陷的扫描加热时间设置为2.5 s,采样时间为3.5 s,采样频率为50 Hz,3 mm圆盘形孔激励过程和冷却过程的序列图像如图 4所示。由序列图像可以看出材料内部损伤会阻碍热流传递,造成缺陷区域表面的瞬态温度小于无损伤区域的温度。同时在125帧之后,由于热源停止激励且材料内部存在热传导作用,缺陷区域与非缺陷区域逐渐趋于热平衡状态,缺陷无法观测。
此外,可以看到在扫描加热的始末位置会出现能量堆积现象,这是因为移动装置在起点和终点为变速运动且平均速度小于设置的匀速运动,相当于延长了始末位置的加热时间。所以为保证采集到的缺陷红外图像是由匀速扫描的热源所激励,仅选择各类缺陷红外图像中间部分作为研究对象。最终4次采集并裁剪得到的1~4号缺陷的红外图像如图 5所示。
3. 红外图像处理及分析
观察实验采集到的缺陷图像可以发现,红外图像存在分辨率低、均匀性差、对比度弱的缺点,导致缺陷图像边缘模糊,与背景难以区分。这给缺陷的准确提取及量化带来挑战。现有的图像分割方法主要集中于以下几类:阈值分割方法、边缘检测方法和区域提取方法。这些方法并不通用,在合适的应用场景下才能取得较好的分割效果。本实验获得的红外图像像素分布不均匀且边缘与背景混杂模糊,在这种模糊环境下使用上述方法进行缺陷提取容易出现边缘漏检或引入非目标信息等问题。因此本文引入直觉模糊C均值聚类算法,该算法可以灵活地对模糊信息进行聚类,保留更多的图像细节信息,达到准确提取缺陷特征的目的。
3.1 直觉模糊C均值聚类原理
实际中的问题往往存在一定模糊性,“非此即彼”的二值逻辑不能准确描述问题实质,所以模糊集理论应运而生。它将经典集合理论中元素与集合间的二值隶属关系{0, 1}扩展变为可以在[0, 1]中取任意中间值的隶属度关系,且取值越接近1,元素对集合的隶属程度越高,反之则隶属程度越低。直觉模糊集是模糊集的重要拓展之一,其在隶属度的基础上又增加了非隶属度和不确定度,可以更加细腻的描述问题的不确定性。假设直觉模糊集A表示了样本x与论域X={x1, x2, …, xn}的关系,论域X的隶属度、非隶属度和不确定度分别用μA(x), γA(x), πA(x)表示,则根据Yager直觉模糊互补公式[15],可将非隶属度写为:
$$ {\gamma _A}(x) = {[1 - {\mu _A}{(x)^\alpha }]^{\frac{1}{\alpha }}},x \in X $$ (12) 不确定度写为:
$$ {\pi _A}(x) = 1 - {\mu _A}(x) - {[1 - {\mu _A}{(x)^\alpha }]^{\frac{1}{\alpha }}},x \in X $$ (13) 直觉模糊集A可表示为:
$$ \begin{array}{l} A_{\text{λ }}^{{\text{IFS}}} = \left\{ {{\mu _A}} \right.(x),{[1 - {\mu _A}{(x)^\alpha }]^{\frac{1}{\alpha }}},1 - {\mu _A}(x) - \hfill \\ {[1 - {\mu _A}{(x)^\alpha }]^{\frac{1}{\alpha }}},x \in \left. X \right\} \hfill \\ \end{array} $$ (14) 式中:α的取值需根据实际情况确定,取值范围一般为[0, 1]。
直觉模糊C均值聚类(Intuitionistic fuzzy C-means,IFCM)算法是一种基于直觉模糊集的聚类方法,其用于图像分割的依据是通过比较每个像素灰度值对于预先确定的各聚类中心灰度值的距离,来衡量每个像素对各类的隶属程度,比较隶属度大小将像素分到隶属程度最大的类中。它的目标函数定义为:
$$ \begin{array}{l} {J_{{\text{IFCM}}}} = \sum\limits_{i = 1}^c {\sum\limits_{j = 1}^n {{\mu _{i,j}}^{ * m}} } {\left\| {{x_j} - {v_i}} \right\|^2} + \hfill \\ \sum\limits_{i = 1}^c {{\pi _i}^ * } {{\text{e}}^{1 - {\pi _i}^ * }} \hfill \\ \end{array} $$ (15) 式中:n为数据总量即像素数量;c为聚类类数;xj代表第j个像素灰度值;vi代表第i个聚类中心灰度值;||*||2表示第j个像素与第i个聚类中心的欧氏距离;式中μi, j*=μi, j+πi, j表示第j个像素对第i个聚类的直觉模糊隶属度,${\pi _i}^ * = \frac{1}{N}\sum\nolimits_{j = 1}^N {{\pi _{i,j}}} $,πi, j代表第i个聚类中第j个像素的不确定度。m代表模糊加权指数,通常依赖经验选取。IFCM通过多次迭代使目标函数最小化,运算期间不断对聚类中心和模糊隶属度进行更新以获取最优聚类。
综上所述,IFCM算法可通过以下步骤实现:①确定模糊加权指数m,聚类数c及初始聚类中心,在[0, 1]区间上取随机数对隶属度矩阵进行初始化;②引入非隶属度γA(x)和不确定度πA(x)将隶属度矩阵变为模糊隶属度矩阵;③使用模糊隶属度矩阵计算所有像素到各聚类中心的欧氏距离,通过比较模糊隶属度大小将样本划分到模糊隶属度最大的类中;④重新计算每个类的聚类中心、所有像素到新的聚类中心的距离,每次计算都使用直觉模糊隶属度矩阵代替原有的隶属度矩阵,并重新划分样本;⑤重复②③④步,直到目标函数达到指定精度,完成模糊聚类划分。
3.2 基于IFCM算法的缺陷提取
出于准确识别和后续缺陷量化的需求,要对实验获得的红外图像进行图像分割以提取缺陷特征。针对红外图像缺陷边缘模糊难以准确识别的问题,使用直觉模糊C均值聚类方法进行模糊聚类,可以提升缺陷特征提取的准确度。其具体处理流程如图 6所示。
首先,利用灰度变换方法对采集到的红外图像进行整体灰度变换;其次,针对红外图像噪声大、对比度弱的缺点,使用高斯滤波和直方图均衡化进行图像预处理;然后,采用直觉模糊C均值聚类对图像进行聚类划分并给各类赋予新的灰度值;接着提取目标区域并进行二值化,最后,对二值图像进行边缘检测,实现缺陷的检测与提取。处理过程中,聚类数目c一般要大于1小于聚类样本总数,本文目的是将缺陷区域与背景分开,所以聚类数目设置为2(根据实际情况,3号缺陷聚类数为3时效果较明显)。模糊加权指数m与分类结果的模糊程度有关,通常依据经验在[1.5, 2.5]区间范围内选择,经过多次试验选定m=2。
对实验获取的1~4号缺陷的红外图像进行灰度变换、滤波和直方图均衡化等预处理后的结果如图 7(a)所示,处理后的图像可减少噪声、拉宽灰度变化范围,易于后续聚类操作。图 7(b)显示了使用直觉模糊C均值聚类方法对4类缺陷进行聚类的结果,可以看出该方法可将缺陷与背景完全分离,不需再借助常用的形态学方法消除毛刺和粘连。为突出缺陷区域,对图 7(b)的聚类结果进行二值化取反操作得到图 7(c)。最后利用边缘检测提取各类缺陷的边缘特征,所得结果如图 7(d)所示。观察特征提取结果可以发现,使用直觉模糊C均值聚类对图像进行聚类处理有助于将所有缺陷的边缘提取出来,而且边缘锐利、完整清晰。
此外,图 8显示了硬聚类算法K-Means的聚类结果,其中1和2号缺陷聚类结果较为清晰完整,目标区域成功与背景分割开;但3号缺陷目标区域与背景出现混杂,4号缺陷未识别出目标区域。与本文所用方法的聚类结果图 7(b)相比,K-Means硬聚类方法对图像细节的识别能力不强,本文方法更适合处理模糊信息并较好地保留图像细节,更有利于后续缺陷特征提取和精确量化。
4. 结论
对于碳纤维增强复合材料(CFRP)无损检测的需求而言,红外热成像法是一种有前景的方法。其中的关键技术之一就是对红外图像中的缺陷特征进行准确提取与识别。本文在分析激光扫描加热原理的基础上,引入一种基于直觉模糊C均值聚类算法的缺陷提取方法,并与硬聚类算法K-Means的聚类结果做了对比。实验及图像处理结果表明:①激光扫描红外热成像法可以有效检测出CFRP存在的缺陷。②基于直觉模糊C均值聚类算法的缺陷提取方法可以提升缺陷模糊边缘的识别和检测能力,在抑制一定噪声干扰的情况下保留更多图像细节信息,能够达到对缺陷边缘完整清晰识别提取的目的。但是本文仍存在不足,比如为验证激光扫描加热的检测能力,采取分别对单个缺陷进行扫描加热的方式,未显示出扫描方式检测效率高的优势,相应的改进还有待下一步研究。
-
图 4 太赫兹成像系统及样品的太赫兹图像:(a) 太赫兹脉冲焦线成像系统;(b) 金属孔阵列样品以及其在0.204 THz、0.407 THz、0.815 THz、1.600 THz处的太赫兹图像[20]
Figure 4. Terahertz imaging system and terahertz images of samples: (a) THz pulse focal imaging system; (b) THz images of metal hole array samples and samples at 0.204 THz, 0.407 THz, 0.815 THz, 1.600 THz[20]
图 15 太赫兹成像技术在安全检查方面的应用:(a) 为中国电科38所研制太赫兹人体安检仪系统成像;(b) 为诺⋅格公司研制的太赫兹安检仪成像
Figure 15. The application of THz imaging technology in security inspection: (a) Imaging for the THz human security detector system developed by China Electric Power 38 Institute; (b) Imaging for the THz security detector developed by Northrop Grumman
-
[1] 李继强, 沈韬, 孙淑红, 等. 太赫兹技术在太阳能电池领域的应用进展[J]. 应用物理, 2018, 8(5): 193-203. LI Jiqiang, SHEN Tao, SUN Shuhong, et al. The progress of the application of terahertz technology in solar cells[J]. Applied Physics, 2018, 8(5): 193-203.
[2] 王春平, 屈惠明, 陈钱. 新型红外成像技术[J]. 光电子技术, 2007, 27(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJS200701011.htm WANG Chunping, QU Huiming, CHEN Qian. New infrared imaging technology[J]. Optoelectronic Technology, 2007, 27(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJS200701011.htm
[3] 赵国忠. 太赫兹光谱和成像应用及展望[J]. 现代科学仪器, 2006(2): 36-40. DOI: 10.3969/j.issn.1003-8892.2006.02.011 ZHAO Guozhong. Application and outlook of THz spectroscopy and imaging[J]. Modern Scientific Instruments, 2006(2): 36-40. DOI: 10.3969/j.issn.1003-8892.2006.02.011
[4] 杨昆, 赵国忠, 梁承森, 等. 脉冲太赫兹波成像与连续波太赫兹成像特性的比较[J]. 中国激光, 2009, 36(11): 2853-2858. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200911014.htm YANG Kun, ZHAO Guozhong, LIANG Chengsen, et al. Comparison of the properties of pulse THz wave imaging with continuous-wave THz imaging[J]. Chinese Journal of Lasers, 2009, 36(11): 2853-2858. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200911014.htm
[5] Auston D H, Smith P R. Generation and detection of millimeter wave by picosecond photoconductivity[J]. Applied Physics Letters, 1983, 43(7): 631–633. DOI: 10.1063/1.94468
[6] Fattinger C, Grischkowsky D. Terahertz Beams[J]. Applied Physics Letters., 1989, 54(6): 490-492. DOI: 10.1063/1.100958
[7] XU L, ZHANG X C, Auston D H. Terahertz beam generation by femtosecond optical pulses in the electro-optic materials[J]. Applied Physics Letters, 1992, 61(15): 1784-1786. DOI: 10.1063/1.108426
[8] HU B B, ZHANG X C, Auston D H. Free-space radiation from electro-optic crystals[J]. Applied Physics Letters, 1990, 56(6): 506-508. DOI: 10.1063/1.103299
[9] Wynne K, Carey J J. An integrated description of terahertz generation through optical rectification, charge transfer, and current surge[J]. Optics Communications, 2005, 256(4): 400-413.
[10] Hamster H, Sullivan A, Gordon S, et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction[J]. Physical Review Letters, 1993, 71(17): 2725-2728. DOI: 10.1103/PhysRevLett.71.2725
[11] Hamster H, Sullivan A, Gordon S, et al. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas[J]. Physical Review E, 1994, 49(1): 671-677. DOI: 10.1103/PhysRevE.49.671
[12] XIE X, DAI J, ZHANG X C. Coherent control of THz wave generation in ambient air[J]. Physical Review Letters, 2006, 96(7): 075005 1-4.
[13] HU B B, NUSS M C. Imaging with terahertz waves[J]. Optics Letters, 1995, 20(16): 1716. DOI: 10.1364/OL.20.001716
[14] 王新柯, 张岩. 太赫兹脉冲焦平面成像技术的发展与应用[J]. 光电工程, 2020, 47(5): 28-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202005004.htm WANG Xinke, ZHANG Yan. The development and application of THz pulse focal plane imaging technology[J]. Opto-Electronic Engineering, 2020, 47(5): 28-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202005004.htm
[15] Johnson J L, Dorney T D, Mittleman D M. Enhanced depth resolution in terahertz imaging using phase-shift interferometry[J]. Applied Physics Letters, 2001, 78(6): 835-837. DOI: 10.1063/1.1346626
[16] Banerjee D, Spiegel W von, Thomson M D, et al. Diagnosing water content in paper by terahertz radiation[J]. Optics Express, 2008, 16(12): 9060-9066. DOI: 10.1364/OE.16.009060
[17] ZHANG X C. Recent progress of terahertz imaging technology[C]// Proc. of 2002 Conference on Optoelectronic and Microelectronic Materials and Devices, 2002: DOI: 10.1109/COMMAD.2002.1237176.
[18] JIANG Z, XU X G, ZHANG X C. Improvement of terahertz imaging with a dynamic subtraction technique[J]. Applied Optics, 2000, 39(17): 2982-2987. DOI: 10.1364/AO.39.002982
[19] ZHONG H, Redo-Sanchez A, ZHANG X C. Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system[J]. Optics Express, 2006, 14(20): 9130-9141. DOI: 10.1364/OE.14.009130
[20] Yasui T, Sawanaka K, Ihara A, et al. Real-time terahertz color scanner for moving objects[J]. Optics Express, 2008, 16(2): 1208-1221. DOI: 10.1364/OE.16.001208
[21] Schirmer M, Fujio M, Minami M, et al. Biomedical applications of a real-time terahertz color scanner[J]. Biomedical optics express, 2010, 1(2): 354-366. DOI: 10.1364/BOE.1.000354
[22] Blanchard F, Doi A, Tanaka T, et al. Real-time terahertz near-field microscope[J]. Optics Express, 2011, 19(9): 8277-84. DOI: 10.1364/OE.19.008277
[23] ZHANG L L, Karpowicz, N, ZHANG C L, et al. Real-time non- destructive imaging with THz waves[J]. Optics Communications, 2008, 281(6): 1473-1475. DOI: 10.1016/j.optcom.2007.11.063
[24] 陈素果, 侯磊, 楼骁, 等. 太赫兹波脉冲成像和连续波成像技术研究[J]. 西安理工大学学报, 2013, 29(2): 127-132. DOI: 10.3969/j.issn.1006-4710.2013.02.001 CHEN Suguo, HOU Lei, LOU Xiao, et al. Investigation of terahertz continuous wave imaging and pulse wave imaging[J]. Journal of Xi'an University of Technology, 2013, 29(2): 127-132. DOI: 10.3969/j.issn.1006-4710.2013.02.001
[25] Sakamoto M, Hattori T. Deformation corrected real-time terahertz imaging[J]. Applied Physics Letters, 2007, 90(26): 261101-261106. DOI: 10.1063/1.2751590
[26] Yasuda T, Kawada Y, Toyoda H, et al. Terahertz movie of internal transmission imaging[J]. Optics Express, 2007, 15(23): 15583-15588. DOI: 10.1364/OE.15.015583
[27] Tait C R, Werley C A, Nelson K A, et al. Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3[J]. Journal of the Optical Society of America, B. Optical Physics, 2010, 27(11): 2350-2359. DOI: 10.1364/JOSAB.27.002350
[28] 徐利兵. 电子学太赫兹技术研究概述[J]. 中国新通信, 2013, 15(22): 3-4. DOI: 10.3969/j.issn.1673-4866.2013.22.003 XU Libing. An overview of electronic terahertz technology research[J]. China New Communications, 2013, 15(22): 3-4. DOI: 10.3969/j.issn.1673-4866.2013.22.003
[29] Han S, Kim N, Lee W, et al. Real-time imaging of moving living objects using a compact terahertz scanner[J]. Applied Physics Express, 2016, 9(2): 022501. DOI: 10.7567/APEX.9.022501
[30] YANG J, RUAN Shuangchen, ZHANG MIN, et al. Real-time continuous -wave imaging with a 1.63 THz OPTL and a pyroelectric camera[J/OL]. Optoelectronics Letters, 2008, 4(DOI: https://DOI.org/10.1007/s11801-008-8036-0).
[31] YAO R, LI Q, WANG Q, 1.63 THz transmission imaging experiment by use of a pyroelectric camera array[C]// Photonics and Optoelectronics Meetings POEM, 2008: 72770D-72771D.
[32] YAO R, LI Q, DING S H, et al. Investigation on 2.45 THz array transmission imaging[C]//Proceedings of SPIE, 2009, 7385: 73850P.
[33] 姚睿, 丁胜晖, 李琦, 等. 2.52 THz面阵透射成像系统改进及分辨率分析[J]. 中国激光, 2011, 38(1): 242-247. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201101050.htm YAO Rui, DING Shenghui, LI Qi, et al. Improvement of 2.52 THz array transmission imaging system and resolution analysis[J]. Chinese Journal of Lasers, 2011, 38(1): 242-247. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201101050.htm
[34] Hunsche, S, Koch M, Brener I, et al. THz near-field imaging[J]. Optics Communications, 1998, 150(1-6): 22-26. DOI: 10.1016/S0030-4018(98)00044-3
[35] Huber A J, Keilmann F, Wittborn J, et al. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices[J]. Nano Letters, 2008, 8(11): 3766-3770. DOI: 10.1021/nl802086x
[36] Moon, K., Do, Y, Lim, M, et al., Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes[J]. Applied Physics Letters, 2012. 101(1): 011109-1-011109-4. DOI: 10.1063/1.4733475
[37] Dean P, Mitrofanov O, Keeley J, et al. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser[J]. Applied Physics Letters, 2016, 108(9): 091113. DOI: 10.1063/1.4943088
[38] Kuschewski F, H G von Ribbeck, Doering J, et al. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz[J]. Applied Physics Letters, 2016, 108(11): 113101-113102. DOI: 10.1063/1.4943789
[39] Degl Innocenti R, Wallis R, Wei B, et al. Terahertz nanoscopy of plasmonic resonances with a quantum cascade laser[J]. ACS Photonics, 2017, 4(9): 2150-2157. DOI: 10.1021/acsphotonics.7b00687
[40] Liewald C, Mastel S, Hesler J, et al. All-electronic terahertz nanoscopy[J]. Optica, 2018, 5(2): 159-163. DOI: 10.1364/OPTICA.5.000159
[41] 岳东东, 游冠军. 散射式太赫兹扫描近场光学显微技术研究[J]. 光学仪器, 2020, 42(2): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYQ202002011.htm YUE Dongdong, YOU Guanjun. Study on scattering-type terahertz scanning near-field optical microscopy[J]. Optical Instruments, 2020. 42(2): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYQ202002011.htm
[42] Salhi M A, Koch M. Semi-confocal imaging with a THz gas laser[C]//Proc. of SPIE on Millimeter-Wave and Terahertz Photonics, 2006, 6194: 61940A(https://DOI.org/10.1117/12.662024).
[43] Salhi M A, Koch M. Confocal THz imaging using a gas laser[C]//33rd International Conference on Infrared, Millimeter and Terahertz Waves, Pasaden: 2008: 1-2(DOI: 10.1109/ICIMW.2008.4665481).
[44] Salhi M, Koch M. High resolution imaging using a THz gas laser [C/OL]//EOS Topical Meeting on Terahertz Science and Technology, 2008: https://igsm.tu-bs.de/publication/2008/high-resolution-imaging-using-thz-gas-laser.
[45] Salhi M A, Pupeza I, Koch M. Confocal THz laser microscope[J]. Journal of Infrared Millimeter & Terahertz Waves, 2010, 31(3): 358-366.
[46] Zinovev N. N., Andrianov A V, Gallant A J, et al. Contrast and resolution enhancement in a confocal terahertz video system[J]. JETP Letters, 2008, 88(8): 492-495. DOI: 10.1134/S0021364008200058
[47] LIM M, KIM J, HAN Y, et al. Perturbation analysis of terahertz confocal microscopy[C]//International Conference on Infrared, Millimeter and Terahertz Waves, 2008: 757-758.
[48] R U Siciliani de Cumis, XU J H, Masini L, et al. Terahertz confocal microscopy with a quantum cascade laser source[C]//International Conference on Infrared, Millimeter and Terahertz Waves, 2012: 1-2.
[49] Hwang Y, Ahn J, Mun J, et al. In vivo analysis of THz wave irradiation induced acute inflammatory response in skin by laser-scanning confocal microscopy[J]. Optics Express, 2014, 22(10): 11465-11475. DOI: 10.1364/OE.22.011465
[50] 张艳东. 连续太赫兹波成像技术的检测应用研究[D]. 北京: 首都师范大学, 2008. ZHANG Yandong. Research on the Detection and Application of Continuous Terahertz Wave Imaging Technology[D]. Beijing: Capital Normal University, 2008.
[51] 丁胜晖, 李琦, 姚睿, 等. THz共焦扫描成像图像处理方法初步研究[C]//第九届全国光电技术学术交流会, 2010: 656-660. DING Shenghui, LI Qi, YAO Rui, et al. THz preliminary study on confocal scanning and imaging image processing method[C]//9th National Optoelectronics Technology Academic Exchange Association, 2010: 656-660.
[52] 邸志刚, 姚建铨, 贾春荣, 等. 太赫兹成像技术在无损检测中的实验研究[J]. 激光与红外, 2011, 41(10): 1163-1166. DOI: 10.3969/j.issn.1001-5078.2011.10.022 DI Zhigang, YAO Jianquan, JIA Chunrong, et al. Experimental study on terahertz imaging technique in nondestructive inspection[J]. Laser & Infrared, 2011, 41(10): 1163-1166. DOI: 10.3969/j.issn.1001-5078.2011.10.022
[53] 黄亚雄, 姚建铨, 凌福日, 等. 基于相干层析的太赫兹成像技术研究[J]. 激光与红外, 2015, 45(10): 1261-1265. DOI: 10.3969/j.issn.1001-5078.2015.10.023 HUANG Yaxiong, YAO Jianquan, LING Furi, et al. Terahertz imaging technology based on coherent tomograph[J]. Laser and Infrared, 2015, 45(10): 1261-1265. DOI: 10.3969/j.issn.1001-5078.2015.10.023
[54] Dengler, R J, Cooper K B, Chattopadhyay G, et al. 600 GHz imaging radar with 2 cm range resolution[C]//International Microwave Symposium, 2007: (DOI: 10.1109/MWSYM.2007.380468).
[55] Cooper, K B, Dengler R J, Llombart N, et al. THz imaging radar for standoff personnel screening[C]//IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 169-182.
[56] Essen H, Wahlen A, Sommer R, et al. High-bandwidth 220 GHz experimental radar[J]. Electronics Letters, 2007, 43(20): 1114-1116. DOI: 10.1049/el:20071865
[57] 胡伟东, 张萌, 武华锋, 等. 频率步进太赫兹脉冲成像技术研究[J]. 强激光与粒子束, 2013, 25(6): 1605-1608. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201306058.htm HU Weidong, ZHANG Meng, WU Huafeng, et al. Research on step-frequency terahertz pulses imaging technology[J]. Strong Laser and Particle Beam, 2013, 25(6): 1605-1608. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201306058.htm
[58] Sheen, D M, Mcmakin D, Barber J, et al. Active imaging at 350 GHz for security applications[C]//Proceedings of SPIE, 2008, 6948 (DOI: 10.1117/12.778011).
[59] Sheen D M, Hall T E, Severtsen R H, et al. Standoff concealed weapon detection using a 350 GHz radar imaging system[C]//Proceedings of SPIE, 2010, 7670(1): 115-118(DOI: 10.1117/12.852788).
[60] Spiegel W V, Weg C A, Henneberger R, et al. Active THz imaging system with improved frame rate[C]//Proceedings of SPIE, 2009, 7311: DOI: 10.1117/12.817925.
[61] Quast H, Loffler T. 3D-terahertz-tomography for material inspection and security[C]//International Conference on Infrared, Millimeter, and Terahertz Waves, 2009: 513-514.
[62] Brahm A, Kunz M, Riehemann S, et al. Volumetric spectral analysis of materials using terahertz-tomography techniques[J]. Applied Physics B, 2010, 100(1): 151-158. DOI: 10.1007/s00340-010-3945-6
[63] Brahm A, Wilms A, Tymoshchuk M, et al. Optical effects at projection measurements for Terahertz tomography[J]. Optics & Laser Technology, 2014, 62: 49-57.
[64] Kato E, Nishina S, Irisawa A, et al. 3D spectroscopic computed tomography imaging using terahertz waves[C]//35th International Conference on Infrared, Millimeter, and Terahertz Waves, 2010: 1-2(DOI: 10.1109/ICIMW.2010.5612981).
[65] Buma T, ZHANG Z. Adaptive image reconstruction for sparse arrays using single-cycle terahertz pulses[J]. Optics Letters, 2010, 35(10): 1680-1682. DOI: 10.1364/OL.35.001680
[66] Abraham E, Younus A, Aguerre C, et al. Refraction losses in terahertz computed tomography[J]. Optics Communications, 2010, 283(10): 2050-2055. DOI: 10.1016/j.optcom.2010.01.013
[67] 郑德伟. 连续太赫兹波层析成像实验研究[D]. 成都: 电子科技大学2011. ZHENG Dewei. Continuous Terahertz Wave Tomography Experimental Research, Chengdu: University of Electronic Technology, 2011.
[68] Robertson D, Marsh P, Bolton D, et al. 340-GHz 3D radar imaging test bed with 10 Hz frame rate. Proceedings of SPIE, 2012, 8362: (DOI: 10.1117/12.918581).
[69] 梁美彦, 邓朝, 张存林. 太赫兹雷达成像技术[J]. 太赫兹科学与电子信息学报, 2013, 11(2): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201302007.htm LIANG Meiyan, DENG Chao, ZHANG Cunlin. THz radar imaging technology[J]. Teahertz Journal of Science and Electronic Information, 2013, 11(2): 189-198. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201302007.htm
[70] Tripathi S R, Sugiyama Y, Murate K, et al. Terahertz wave three-dimensional computed tomography based on injection-seeded terahertz wave parametric emitter and detector[J]. Optics Express, 2016, 24(6): 6433. DOI: 10.1364/OE.24.006433
[71] ZHOU T, ZHANG R, YAO C, et al. Terahertz three-dimensional imaging based on computed tomography with photonics-based noise source[J]. Chinese Physics Letters, 2017, 34(8): 084206. DOI: 10.1088/0256-307X/34/8/084206
[72] WANG X, YE J, ZHANG Y, et al. Terahertz real-time imaging with balanced electro-optic detection[J]. Optics Communications, 2010, 283(23): 4626-4632. DOI: 10.1016/j.optcom.2010.07.010
[73] Hattori T, Ohta K, Rungsawang R, et al. Phase-sensitive high-speed THz imaging[J]. Journal of Physics D-Applied Physics, 2004, 37(5): 770-773. DOI: 10.1088/0022-3727/37/5/020
[74] Rungsawang R, Mochiduki A, Ookuma S, et al. 1-kHz real-time imaging using a half-cycle terahertz electromagnetic pulse[J]. Japanese Journal of Applied Physics, 2005, 44(8/11): L288-L291.
[75] 王新柯. 太赫兹实时成像中关键技术的研究与改进[D]. 哈尔滨: 哈尔滨工业大学, 2011. WANG Xinke, Research and Improvement of Key Technologies in THz Live Imaging[D]. Harbin: Harbin Institute of Technology, 2011.
[76] Kitahara H, Tani M, Hangyo M. Two-dimensional electro-optic sampling of terahertz radiation using high-speed complementary metal-oxide semiconductor camera combined with arrayed polarizer[J]. Applied Physics Letters, 2009, 94(9): 91111-91119. DOI: 10.1063/1.3094879
[77] Wiegand C, Herrmann M, Bachtler S, et al. A pulsed THz imaging system with a line focus and a balanced 1-D detection scheme with two industrial CCD line-scan cameras[J]. Optics Express, 2010, 18(6): 5595. DOI: 10.1364/OE.18.005595
[78] Planken P C M, W A M van der Marel, N C J van der Valk. Terahertz polarization imaging[J]. Optics Letters, 2005, 30(20): 2802-2804. DOI: 10.1364/OL.30.002802
[79] Rutz F, Richter H, Ewert U, et al. Terahertz birefringence of liquid crystal polymers[J]. Applied Physics Letters, 2006, 89(22): 221911. DOI: 10.1063/1.2397564
[80] Jordens C, Maik S, Wichmann M, et al. Terahertz birefringence for orientation analysis[J]. Applied Optics, 2009, 48(11): 2037-2044. DOI: 10.1364/AO.48.002037
[81] ZHAO Y, ZHANG L, ZHANG C, et al. Terahertz polarization imaging with birefringent materials[J]. Optics Communications, 2010, 283(24): 4993-4995. DOI: 10.1016/j.optcom.2010.08.014
[82] Loffler T, Thilo M, CA W, et al. Continuous-wave terahertz imaging with a hybrid system[J]. Applied Physics Letters, 2007, 90(9): 91111. DOI: 10.1063/1.2711183
[83] Lee K, JIN K H, YE J C, et al. Coherent optical computing for terahertz imaging[C]//CLEO/QELS: 2010 Laser Science to Photonic Applications, 2010: 1-2.
[84] YU N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities[J]. Science, 2011, 334(6054): 333-337. DOI: 10.1126/science.1210713
[85] Han R, ZHANG Y, Kim Y, et al. Terahertz image sensors using CMOS Schottky barrier diodes[C]//International SoC Design Conference, 2012: 254-257(DOI: 10.1109/ISOCC.2012.6407088).
[86] HUANG Z M, ZHOU W, TONG J C, et al. Extreme sensitivity of room-temperature photoelectric effect for terahertz detection[J]. Advanced Materials, 2016, 28(1): 112-117. DOI: 10.1002/adma.201503350
[87] 吴福伟, 刘振华, 李大圣, 等. 220 GHz太赫兹合成孔径雷达[J]. 太赫兹科学与电子信息学报, 2017, 15(3): 368-371. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201703006.htm WU Fuwei, LIU Zhenhua, LI Dasheng, et al. A 220 GHz terahertz synthetic aperture radar[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(3): 368-371. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201703006.htm
[88] LIU Z Y, LIU L Y, YAN J G, et al. A fully-integrated 860-GHz CMOS terahertz sensor[C]//Solid-state Circuits Conference, 2015: 1-4(DOI: 10.1109/ASSCC.2015.7387437).
[89] SHE R, LIU W, LU Y, et al. Fourier single-pixel imaging in the terahertz regime[J]. Applied Physics Letters, 2019, 115(2): 21101. DOI: 10.1063/1.5094728
[90] 王军, 蒋亚东. 室温微测辐射热计太赫兹探测阵列技术研究进展(特邀)[J]. 红外与激光工程, 2019, 48(1): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201901005.htm WANG Jun, JIANG Yadong. Technical research progress in room temperature radiation technology (specially invited) [J]. Infrared and Laser Engineering, 2019, 48(1): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201901005.htm
[91] Lee A. W., Hu Q. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array[J]. Optics Letters, 2005, 30(19): 2563-2565. DOI: 10.1364/OL.30.002563
[92] Knyazev B A, Dem'Yanenko A A, Esaev D G. Terahertz imaging with a 160×120 pixel microbolometer 90-fps camera[J]. 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, 2007: 360-361.
[93] Seiji Kurashina, Naoki Oda. Bolometer-type terahertz wave detector: US08618483B2[P]. [2013-12-31].
[94] Pope T, Doucet M, Dupont F, et al. Uncooled detector, optics, and camera development for THz imaging[J]. Proceedings of the SPIE - The International Society for Optical Engineering, 2009, 7311: 73110L-73119L. DOI: 10.1117/12.819923
[95] Hosako I, Sekine N, Oda N, et al. A real-time terahertz imaging system consisting of terahertz quantum cascade laser and uncooled microbolometer array detector[C]//Conference on Terahertz Physics, Devices, and Systems V: Advanced Applications in Industry and Defense, 2011: 1-6.
[96] Oulachgar H, Linda Marchese, Christine Alain, et al. Development of MEMS microbolometer detector for THz applications[C]//International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz 2010), 2010: 1-2(DOI: 10.1109/ICIMW.2010.5612408).
[97] Oulachgar H, Bolduc M, Tremblay M, et al. Simulation and fabrication of large area uncooled microbolometers for Terahertz wave detection [C]//International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2011), 2011: 766-767.
[98] Blanchard N, Marchese L, Martel A, et al. Catadioptric optics for high-resolution terahertz imager[C]//Conference on Terahertz Physics, Devices, and Systems Ⅵ: Advanced Applications in Industry and Defense, 2012: 1-9.
[99] Duy-Thong N, Simoens F, Ouvrier-Buffet J, et al. Broadband THz uncooled antenna-coupled microbolometer array-electromagnetic design, simulations and measurements[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(3): 299-305. DOI: 10.1109/TTHZ.2012.2188395
[100] Marchese L, Doucet M, Blanchard N, et al. Overcoming the challenges of active THz/MM-wave imaging: an optics perspective[C/OL]//Proc. of SPIE on Micro- and Nanotechnology Sensors, Systems, and Applications X, 2018, 10639: 106392B(DOI: 10.1117/12.2305398).
[101] 朱彬, 陈彦, 邓科, 等. 太赫兹科学技术及其应用[J]. 成都大学学报: 自然科学版, 2008, 27(4): 304-307. DOI: 10.3969/j.issn.1004-5422.2008.04.011 ZHU Bin, CHEN Yan, DENG Ke, et al. Terahertz science and technology and its applications[J]. Journal of Chengdu University: Natural Science, 2008, 27(4): 304-307. DOI: 10.3969/j.issn.1004-5422.2008.04.011
[102] 谢旭, 钟华, 袁韬, 等. 使用太赫兹技术研究航天飞机失事的原因[J]. 物理, 2003, 32(9): 583-584. DOI: 10.3321/j.issn:0379-4148.2003.09.004 XIE Xu, ZHONG Hua, YUAN Tao, et al. Used terahertz technology to study the cause of the space shuttle crash[J]. Physics, 2003, 32(9): 583-584. DOI: 10.3321/j.issn:0379-4148.2003.09.004
[103] Cheon H, YANG H J, Son J H. Toward clinical cancer imaging using terahertz spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 1-9.
[104] 陈小婉, 蒋林华. 太赫兹技术在生物医学中的应用[J]. 激光生物学报, 2020, 29(2): 97-105. DOI: 10.3969/j.issn.1007-7146.2020.02.001 CHEN Xiaowan, JIANG Linhua. Application of terahertz technology in biomedicine[J]. Laser Biology Journal, 2020, 29(2): 97-105. DOI: 10.3969/j.issn.1007-7146.2020.02.001
[105] 姚建铨, 太赫兹技术及其应用[J]. 重庆邮电大学学报: 自然科学版, 2010, 22(6): 703-707. https://www.cnki.com.cn/Article/CJFDTOTAL-CASH201006002.htm YAO Jianquan. Introduction of THz-wave and its applications[J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science, 2010, 22(6): 703-707. https://www.cnki.com.cn/Article/CJFDTOTAL-CASH201006002.htm
[106] Bourdin H, Boulanger F, Lagache B G. Cold dust and very cold excess emission in the galaxy[J]. Astrophysics and Space Science, 2002: 243-246(DOI: 10.1023/A:1019558719927).
[107] ZHANG Zhiyu, Romano D, Ivison R J, et al. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time[J]. Nature, 2018, 558: 260. DOI: 10.1038/s41586-018-0196-x
[108] Stark A A., AST/RO: A small submillimeter telescope at the south pole[J/OL]. Physics, 2001(arXiv: astro-ph/0110429).
[109] 黄志明, 太赫兹光学差频源[M]. 北京: 科学出版社, 2016. HUANG Zhiming, Terahertz Optical Difference Frequency Source[M]. Beijing: Science Press, 2016: 5-6.
-
期刊类型引用(3)
1. 王茜萌. 基于行为聚类的电子商务恶意支付用户检测. 信息与电脑(理论版). 2023(03): 25-27 . 百度学术
2. 杜玉红,张松奇. 基于红外图像的耐腐蚀船舶材料表面缺陷识别研究. 舰船科学技术. 2023(14): 152-155 . 百度学术
3. 苗勃. 基于红外图像增强算法的石油储罐内油品温度过高风险自动识别方法. 化工自动化及仪表. 2023(06): 900-904 . 百度学术
其他类型引用(10)