留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雪崩光电二极管过剩噪声的测量和抑制方法

李再波 李云雪 马旭 田亚芳 史衍丽

李再波, 李云雪, 马旭, 田亚芳, 史衍丽. 雪崩光电二极管过剩噪声的测量和抑制方法[J]. 红外技术, 2022, 44(4): 343-350.
引用本文: 李再波, 李云雪, 马旭, 田亚芳, 史衍丽. 雪崩光电二极管过剩噪声的测量和抑制方法[J]. 红外技术, 2022, 44(4): 343-350.
LI Zaibo, LI Yunxue, MA Xu, TIAN Yafang, SHI Yanli. Measurement and Suppression Method for Excess Noise in Avalanche Photodiodes[J]. Infrared Technology , 2022, 44(4): 343-350.
Citation: LI Zaibo, LI Yunxue, MA Xu, TIAN Yafang, SHI Yanli. Measurement and Suppression Method for Excess Noise in Avalanche Photodiodes[J]. Infrared Technology , 2022, 44(4): 343-350.

雪崩光电二极管过剩噪声的测量和抑制方法

基金项目: 

云南大学研究生科研创新基金项目 2020290

云南省重大科技项目 2018ZI002

详细信息
    作者简介:

    李再波(1997-),男,湖南永州人,硕士研究生,研究方向为半导体光电探测器研究。E-mail:zaiboli_yun@163.com

    通讯作者:

    田亚芳(1978-),女,湖北赤壁人,实验师,研究方向为半导体光电材料与器件。E-mail:xntyf@sohu.com

    史衍丽(1969-),女,山东郓城人,研究员,博士生导师,研究方向为半导体光电器件物理与器件研究。E-mail:ylshikm@hotmail.com

  • 中图分类号: TN215

Measurement and Suppression Method for Excess Noise in Avalanche Photodiodes

  • 摘要: 雪崩光电二极管(APD)因为其高灵敏度和高增益带宽的优势已被广泛应用在高比特率、远程光纤通信系统中,而雪崩过程中产生的过剩噪声直接影响到APD的信噪比,因此,研究过剩噪声对APD性能的提升具有重要意义。目前,国内外测试雪崩光电二极管过剩噪声的方法主要有直接功率测量法和相敏探测法,本文对这两种测试方法和其优缺点进行了分析,并介绍了最新的改进测试思路。同时,还总结了降低过剩噪声的3种方法:选择低碰撞电离系数比的材料,降低倍增层厚度和采用APD碰撞电离工程来降低噪声。
  • 图  1  相敏探测法噪声测试系统

    Figure  1.  Phase-sensitive detection method noise test system

    图  2  GaAs PIN二极管的M-F曲线[3]

    Figure  2.  M-F curves of GaAs PIN diode[3]

    图  3  不同厚度Si PIN APDs的M-F曲线[11]

    Figure  3.  M-F curves of Si PIN APD with different thicknesses[11]

    图  4  光功率衰减10-2.3的AlInP雪崩二极管的M-F曲线[12]

    Figure  4.  M-F curve of the AlInP avalanche diode under optical power attenuates by 10−2.3[12]

    图  5  直接功率测量噪声系统[4]

    Figure  5.  Direct power measurement noise system[4] Excessive noise factor, F

    图  6  APD的F与增益的关系[16]

    Figure  6.  The relationship between F and gain of APD[16]

    图  7  Ge/Si SACM APD的平面示意图和横截面图[18]

    Figure  7.  Schematic cross section of Ge on Si SACM APD[18]

    图  8  Ge/Si APD的碰撞电离系数比k[18]

    Figure  8.  Collision ionization coefficient ratio k of Ge/Si APD[18]

    图  9  Al0.7In0.3As0.3Sb0.7 SAGCM APD的横截面示意图和电场分布[19]

    Figure  9.  Schematic diagram of the cross-section and electric field distribution of the Al0.7In0.3As0.3Sb0.7 SAGCM APD[19]

    图  10  AlInAsSb APD的碰撞电离系数比k[19]

    Figure  10.  Collision ionization coefficient ratio k of AlInAsSb APD[19]

    图  11  常用半导体材料的碰撞电离系数比k[21]

    Figure  11.  Collision ionization coefficient ratio k of common semiconductor materials[21]

    图  12  GaAs APD不同倍增层厚度的k[22]

    Figure  12.  Collision ionization coefficient ratio k of GaAs APD with different multiplication layer thicknesses[22]

    图  13  两种模型模拟不同倍增层厚度的k[23]

    Figure  13.  Two models to simulate the k value of different multiplication layer thicknesses[23]

    图  14  制造的InAlAs/InGaAs I2E APD的示意图[27]

    Figure  14.  Schematic diagram of the fabricated InAlAs/InGaAs I2E APD[27]

    图  15  串联I2E InAlAs/InGaAs APD能带图[28]

    Figure  15.  Series I2E InAlAs/InGaAs APD band diagram[28]

    图  16  模拟串联I2E InAlAs/InGaAs APD的k[28]

    Figure  16.  Simulation of k value of series I2E InAlAs/InGaAs[28]

    图  17  单级APD和串联APD的模拟增益带宽积[28]

    Figure  17.  Simulated gain-bandwidth product of single-stage APD and series APD[28]

  • [1] Tosi A, Calandri N, Sanzaro M, et al. Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 192-197. doi:  10.1109/JSTQE.2014.2328440
    [2] Emmons R B. Avalanche photodiode frequency response[J]. Journal of Applied Physics, 1967, 38(9): 3705-3714. doi:  10.1063/1.1710199
    [3] Lau K S, Tan C H, Ng B K, et al. Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end[J]. Measurement Science and Technology, 2006, 17(7): 1941-1946. doi:  10.1088/0957-0233/17/7/036
    [4] Campbell J C, Chandrasekhar S, Tsang W T, et al. Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes[J]. Journal of Lightwave Technology, 1989, 7(3): 473-478. doi:  10.1109/50.16883
    [5] 李奕键. APD电路模拟与过剩噪声因子实验研究[D]. 武汉: 华中科技大学, 2013.

    LI Yijian. Experimental study on APD Circuit Simulation and excess Noise factor[D]. Wuhan: Huazhong University of Science and Technology, 2013.
    [6] 郭萍, 崔大健, 王波. PIN、雪崩光电二极管测试方法: SJ/T 2354-2015[S]. [2015-09-26] 北京: 中国电子技术标准化研究院.

    GUO Ping, CUI Dajian, WANG Bo. SJ/T 2354-2015 PIN, avalanche photodiode test method[S] [2015-09-26]. Beijing: China National Institute of Electronic Technology Standardization.
    [7] 李永亮, 余健辉, 张军. APD探测器模块性能及噪声检测[J]. 应用光学, 2019, 40(6): 1115-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201906030.htm

    LI Yonliang, YU Jianhui, ZHANG Jun. APD detector module performance and noise detection[J]. Applied Optics, 2019, 40(6): 1115-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201906030.htm
    [8] Bulman G E, Robbins V M, Stillman G E. The determination of impact ionization coefficients in (100) gallium arsenide using avalanche noise and photocurrent multiplication measurements[J]. IEEE Transactions on Electron Devices, 2005, 32(11): 2454-2466.
    [9] Anselm K A, Yuan P, Hu C, et al. Characteristics of GaAs and AlGaAs homojunction avalanche photodiodes with thin multiplication regions[J]. Applied Physics Letters, 1997, 71(26): 3883-3885. doi:  10.1063/1.120533
    [10] LI K F, ONG D S, David J, et al. Avalanche multiplication noise characteristics in thin GaAs p+-i-n+ diodes[J]. IEEE Transactions on Electron Devices, 1998, 45(10): 2102-2107. doi:  10.1109/16.725242
    [11] Green J E, David J P R, Tozer R C. A transimpedance amplifier for excess noise measurements of high junction capacitance avalanche photodiodes[J]. Measurement Science & Technology, 2012, 23(12): 125901-125913.
    [12] LIANG Q, Dimler S D, Baharuddin N A P, et al. An excess noise measurement system for weak responsivity avalanche photodiodes[J]. Measurement Science and Technology, 2018, 29(6): 065015-065021. doi:  10.1088/1361-6501/aabc8b
    [13] LIANG Q, Cheong J S L, Ong J S, et al. Avalanche noise in Al0.52In0.48P diodes[J]. IEEE Photonics Technology Lett, 2016, 28(4): 481-484. doi:  10.1109/LPT.2015.2499545
    [14] CHOU F P, Hsieh Y C, HUANG C A, et al. Excess noise of 850-nm silicon avalanche photodiodes fabricated using CMOS process[C]//2014 International Symposium on Next-Generation Electronics (ISNE) of IEEE, 2014, 978(1): 1-3.
    [15] Lee M J, Rücker H, Choi W Y. Optical-power dependence of gain, noise, and bandwidth characteristics for 850-nm CMOS silicon avalanche photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 211-217. doi:  10.1109/JSTQE.2014.2327796
    [16] WEN K, TU J J, ZHAO Y L. A balanced optical system for excess noise factor measurement of avalanche photodiode[C]//Asia Communications and Photonics Conference, 2016: DOI: 10.1364/ACPC.2016.AF2A.67.
    [17] Webb R P, McIntyre R J, Conradi J, et al. Properties of avalanche photodiodes[J]. R. C. A. Review, 1974, 35(2): 234-278.
    [18] KANG Y, Zadka M, Litski S, et al. Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 mm light detection[J]. Optics Express, 2008, 16(13): 9365-9371. doi:  10.1364/OE.16.009365
    [19] Min R, Maddox S J, Woodson M E, et al. AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes[J]. Applied Physics Letters, 2016, 108(191108): 1-4.
    [20] Watanabe I, Torikai T, Makita K, et al. Impact Ionization Rates in (100) Al0.48In0.52As[J]. IEEE Electron Device Letters, 1990, 11(10): 437-438. doi:  10.1109/55.62988
    [21] BAI X G, YUAN P, Mcdonald P, et al. Development of low excess noise SWIR APDs[C]// Infrared Technology & Applications XXXVIII, 2012, 8353: 83532H.
    [22] HU C, Anselm K A, Streetman B G, et al. Noise characteristics of thin multiplication region GaAs avalanche photodiodes[J]. Applied Physics Letters, 1996, 69(24): 3734-3736. doi:  10.1063/1.117205
    [23] Ong D S, LI K F, Rees G J, et al. A simple model to determine multiplication and noise in avalanche photodiodes[J]. Journal of Applied Physics, 1998, 83(6): 3426-3428. doi:  10.1063/1.367111
    [24] YUAN P, WANG S, SUN X, et al. Avalanche photodiodes with an impact-ionization-engineered multiplication region[J]. IEEE Photonics Technology Letters, 2000, 12(10): 1370-1372. doi:  10.1109/68.883833
    [25] DUAN N, WANG S L, MA F, et al. High-speed and low-noise SACM avalanche photodiodes with an impact-ionization-engineered multiplication region[J]. IEEE Photonics Technology Letters, 2005, 17(8): 1719-1721. doi:  10.1109/LPT.2005.851903
    [26] Burris H R, Ferraro M S, Freeman W T, et al. Development of a large area InGaAs APD receiver based on an impact ionization engineered detector for free-space lasercomm applications[J]. Atmospheric Propagation IX, 2012, 10(12): 1370-1372.
    [27] Ferraro M S, Rabinovich W S, Mahon R, et al. Position Sensing and High Bandwidth Data Communication Using Impact Ionization Engineered APD Arrays[J]. IEEE Photonics Technology Letters, 2019, 31(1): 58-61. doi:  10.1109/LPT.2018.2882886
    [28] SUN W L, ZHENG X G, LU Z W, et al. Numerical simulation of InAlAs/ InAlGaAs tandem avalanche photodiodes[C]// IEEE Photonic Society 24th Annual Meeting, 2011: DOI: 10.1109/PHO.2011.6110535.
  • 加载中
图(17)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  42
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 修回日期:  2021-07-29
  • 刊出日期:  2022-04-20

目录

    /

    返回文章
    返回