道路裂缝检测的可见光与红外图像融合技术

Visible and Infrared Image Fusion for Road Crack Detection

  • 摘要: 为了解决可见光与红外图像融合中存在小裂缝不易识别,伴随光照强度变弱造成纹理细节丢失和引入边缘伪影等常见问题,本文提出了一种基于多尺度特征提取的多路注意力生成对抗网络(Multiscale feature extraction-multiscale attention GAN,M2GAN)的图像融合方法。首先,M2GAN提出一种多尺度特征提取模块,该模块采用配准后的可见光和红外图像,提取可见光与红外图像中不同尺度信息,并通过侧边连接使融合过程中的裂缝细节和语义信息同时被保留,使裂缝特征更加丰富。此外,还提出了多路注意力机制,将多尺度融合图像分别和红外源图像、可见光源图像拼接起来,构建红外强度路径和可见光梯度路径,以保存更多目标信息和背景信息。在自制数据集上,与多种主流图像融合算法的实验结果对比,6种评价指标结果显著提高,其中结构相似性、边缘保持度指标分别平均提高了10.66%和24.92%。M2GAN具有更好的视觉效果与结构相似度,在客观评价方面优于对比方法。

     

    Abstract: To address the typical challenges in visible and infrared image fusion, such as difficulty in recognizing small cracks, loss of texture details, and introduction of edge artifacts due to the simultaneous weakening of light intensity, this study proposes a multiscale feature extraction–multiscale attention generative adversarial network (M2GAN) method for image fusion. First, the M2GAN introduces a multiscale feature-extraction module that utilizes aligned visible and infrared images to extract information at different scales from both image types. This approach ensures that crack details and semantic information are preserved during the fusion process through side connections, thus resulting in more prominent crack features. Additionally, a multiplexed attention mechanism is proposed to stitch the multiscale fused image with the infrared and visible source images to construct the infrared intensity path and visible gradient path, respectively, thus preserving more target and background information. On a custom-developed dataset, the results of six evaluation indices show significant improvements by the proposed method compared with many mainstream image-fusion algorithms. Specifically, the structural similarity and edge retention improved by an average of 10.66% and 24.92%, respectively. The M2GAN demonstrates better visual effects and structural similarity, thus outperforming comparative methods in objective evaluations.

     

/

返回文章
返回