Multimodal Fusion Detection of UAV Target Based on Siamese Network
-
摘要: 为解决小型无人机“黑飞”对公共领域的威胁问题。基于无人机目标多模态图像信息,文中提出一种轻量化多模态自适应融合孪生网络(Multimodal adaptive fusion Siamese network,MAFS)。设计一种全新的自适应融合策略,该模块通过定义两个模型训练参数赋予不同模态权重以实现自适应融合;本文在Ghost PAN基础上进行结构重建,构建一种更适合无人机目标检测的金字塔融合结构。消融实验结果表明本文算法各个模块对无人机目标检测精度均有提升,多算法对比实验结果表明本文算法鲁棒性更强,与Nanodet Plus-m相比检测时间基本不变的情况下mAP提升9%。Abstract: To address the threat of small drones "black flying" to the public domain. Based on the multimodal image information of an unmanned aerial vehicle (UAV) target, a lightweight multimodal adaptive fusion Siamese network is proposed in this paper. To design a new adaptive fusion strategy, this module assigns different modal weights by defining two model training parameters to achieve adaptive fusion. The structure is reconstructed on the basis of a Ghost PAN, and a pyramid fusion structure more suitable for UAV target detection is constructed. The results of ablation experiments show that each module of the algorithm in this study can improve the detection accuracy of the UAV targets. Multi-algorithm comparison experiments demonstrated the robustness of the algorithm. The mAP increased by 9% when the detection time was basically unchanged.
-
Keywords:
- UAV /
- lightweight /
- Siamese network /
- adaptive fusion strategy /
- multimodal image
-
0. 引言
红外场景产生器是红外成像系统内场半实物仿真测试的重要组成部分,其可将计算机仿真的灰度图像实时转换为红外成像系统能敏感的红外辐射信号,用来模拟各类目标、背景以及干扰的红外辐射[1]。数字微镜器件(Digital Micro-mirror Device,DMD)以其分辨率高、帧频高、动态范围大等优势广泛应用于各类红外场景产生器中[2]。对于理想的DMD红外场景产生器,在相同的输入下所有微镜单元应产生一致的红外辐射响应。而实际由于光源、光学系统以及DMD器件响应一致性等因素的影响,各个微镜单元的红外辐射响应却并不相同,即表现为红外场景产生器辐射的非均匀性。根据前期调研结果,DMD红外场景产生器当前在国内工业部门的半实物仿真测试中主要用来模拟目标的运动特性,而对目标和背景红外辐射特性的模拟精度要求相对不高,并且鲜有对于人为主动干扰的模拟。DMD红外场景产生器非均匀性对于工业部门红外成像系统半实物仿真测试的影响可以忽略不计,因此在非均匀性校正(Nonuniformity Correction,NUC)方面的研究比较少[3-5]。
对于复杂光电环境下红外成像系统对抗的内场仿真测试试验,红外场景产生器不仅要模拟目标的运动特性,更需要精确模拟目标、背景的红外辐射特性以及自然、人为干扰效应和大气传输效应。此时,DMD红外场景产生器的非均匀性则成为影响其红外场景仿真质量而不容忽视的一个的重要因素。
为了提高内场仿真试验中红外辐射场景模拟的逼真度,本文在深入研究当前广泛使用的非均匀性校正方法基础上,针对DMD分辨率相对电阻阵列较大的特点,根据非均匀性测量信号的信噪比调整稀疏网格大小,提出一种适用于DMD红外场景产生器的非均匀性测量和校正方法。该方法可有效改善DMD红外场景产生器的非均匀性,提高红外场景模拟精度,对DMD红外场景产生器在红外场景动态仿真方面的应用具有一定参考价值。
1. 变尺度稀疏网格非均匀性测量
对每个辐射元的辐射响应特性进行精确测量是非均匀性校正的前提。目前国内外对电阻阵列非均匀性测量方法的研究较多并且大多只针对电阻阵列器件自身。本文将在深入研究电阻阵列非均匀性测量方法的基础上,充分考虑DMD特性,提出一种适用于DMD的非均匀性测量方法。同时考虑到DMD配套不同光学系统,其非均匀性表现是不同的,因此本文将对DMD红外场景产生器整个系统的非均匀性进行测量。
1.1 传统稀疏网格测量方法
当前关于电阻阵列非均匀性测量的方法主要有“稀疏网格”法和“Flood”法两种,区别主要是非均匀性信息的采集方法和数据处理方法上的不同。稀疏网格法是将电阻阵列划分成网格再对网格中每个辐射元进行逐个测量,而Flood法是把电阻阵列作为一个整体进行测量。测量过程中,Flood法需要精确调校电阻阵列辐射元与热像仪像元之间的映射比,而稀疏网格法则不需要考虑电阻阵列辐射元与热像仪像元之间的映射比,更加简便易用[6-11]。考虑到DMD的辐射元数量远高于电阻阵列,同时也高于大部分红外成像设备,难以准确建立DMD微镜单元与热像仪像元之间的映射比,因此本文主要对稀疏网格法进行研究。
传统稀疏网格法的测量原理如下[12]:首先在DMD上划分虚拟的网格,网格大小的选取以相邻网格中同一位置微镜单元的辐射能量在探测焦平面不发生混叠为准。然后依次点亮网格图像,对DMD每个微镜单元的输出响应进行测量。DMD的每一幅网格图像都是通过点亮各网格内的某一特定位置上的单个微镜单元产生的。点亮每个网格中第一行第一列的微镜单元,构成第一幅网格图像。对第一幅网格图像测量完毕后,熄灭其中的微镜单元,然后点亮每个网格中第一行第二列的微镜单元,构成第二幅网格图像。依次点亮每个网格中的单个微镜单元,产生一幅幅网格图像,依次对网格图像进行测量,直到对整个DMD测量完毕。依次点亮网格图像的过程可称为网格图像的“移位”。DMD网格图像产生和移位过程如图 1所示,图中为一个假想的4×4 DMD,每个小方格表示一个微镜单元,填充黑色部分表示被点亮的微镜单元。将该DMD划分为4个网格,每个网格的大小为2×2,测量整个DMD共需要投射4幅网格图像。
1.2 变尺度稀疏网格测量方法
稀疏网格法最大的优点在于能够对DMD每一个微镜单元的输出响应进行单独测量,各个微镜单元之间的辐射没有耦合。不过在对单个微镜单元的输出响应进行测量时,由于微镜单元的面积很小,辐射亮度有限。因此在驱动占空较大的高辐射区间即信噪比较高时,测量精度较高,而在驱动占空比较小的低辐射区间即信噪比较低时,很容易受到背景红外辐射和随机噪声的干扰,甚至被淹没掉,所以该方法对测量设备和测试环境的要求很高。为了克服单个微镜单元在低辐射区间容易受到背景红外辐射和随机噪声干扰的难题,本文结合现有测试条件对传统稀疏网格法做了改进,提出一种变尺度的稀疏网格测量方法。
当DMD辐射亮度较低时,由于红外成像系统探测能力有限,因此在一定区域范围内(m×m)的微镜单元的非均匀性可以近似忽略,并且m值随着DMD辐射亮度的降低而增大。根据该测试现象,与传统稀疏网格法在测量过程中只点亮各网格内单个微镜单元不同,本文将网格内m×m区间范围内的微镜单元同时点亮然后移位,如图 2所示。图中为一个假想的8×8 DMD,每个小方格表示一个微镜单元。设定网格大小为4×4,将该DMD划分为4个网格。在对某一辐射亮度测量过程中,以4个微镜单元为一组,即在网格中2×2区间范围内微镜单元的响应差别可以忽略不计。测量时,首先点亮每个子网格内的第一组微镜单元,取这4个微镜单元响应输出的平均值,将此平均值作为各个子网格内第一组4个微镜单元的响应输出。然后按此方法依次对每个子网格内其它若干组微镜单元的响应输出进行测量,直到对整个DMD的所有微镜单元响应输出测量完毕。
在整个辐射亮度范围测量过程中,以m×m区间范围内微镜单元响应的平均值作为其中每个微镜单元的响应,并且m的取值大小会随着辐射亮度的变化而相应调整。当微镜单元辐射亮度较小时,由于测量信号的信噪比较低,此时m的取值相对较大;测量过程中随着微镜单元辐射亮度逐渐增大,m的取值随之逐渐减小;当微镜单元辐射亮度增大到一定范围时,由于测量信号的信噪比较高,可将m的设置为1,此时测量方法与传统的稀疏网格相同。这样通过调整m值大小可以保证在DMD整个辐射亮度范围内都有较好的测量结果。
理论上当DMD辐射亮度较小时,忽略同一区间范围内各微镜单元之间的非均匀性,对“面”测量取平均值会带来方法误差,测量精度必然会比对“点”测量要低。然而在实际测量中发现,受测量设备灵敏度所限,当DMD辐射亮度较小时,对“面”测量取平均值的精度反而要优于直接对“点”测量的精度。因此,本文所提出的变尺度稀疏网格测量方法非常适合现有测量条件下对DMD红外场景产生器非均匀性的测量。
2. 非均匀性校正
DMD红外场景产生器非均匀性校正的基本思路是首先对非均匀性测量数据进行离线处理,生成非均匀性校正所需的校正参数查找表(Look up table, LUT);然后再根据非均匀性校正参数对DMD红外场景产生器的输入量进行在线修正,以此实现对DMD红外场景产生器非均匀性的实时校正。
为了降低非均匀校正难度,首先对微镜单元响应特性进行线性化处理。根据微镜单元平均响应特性数据拟合曲线并作为所有微镜单元的标准响应曲线,然后求其反函数作为每个微镜单元的线性化函数。这样,每个微镜单元的输入经过线性化函数运算后再作用于微镜上,即可使得微镜单元的输入与输出近似为线性关系。为了保证线性化运算的实时性,选择选取适当的断点数量将线性化函数分段线性化,如图 3所示。
假设选取h个断点将其分为h-1个直线段,线性化函数每个直线段都对应一组由增益Glinek和偏置Olinek组成的修正数据,其中:
$$ \left\{ \begin{array}{l} G_{{\rm{line}}}^k = \frac{{{d^{k + 1}} - {d^k}}}{{{{\bar l}^{k + 1}} - {{\bar l}^k}}}\\ O_{{\rm{line}}}^k = \frac{{{d^k} \cdot {{\bar l}^{k + 1}} - {d^{k + 1}} \cdot {{\bar l}^k}}}{{{{\bar l}^{k + 1}} - {{\bar l}^k}}} \end{array} \right.\quad k = 1, \cdots , h - 1 $$ (1) 式中:dk为第k个断点处微镜单元的驱动占空比; ${\bar l^k} $为第k个断点处微镜单元的标准响应。将式(1)中增益校正系数Glinek和偏置校正系数Olinek存于缓存以供非线性实时校正时使用,即为线性化查找表。线性化查找表的数据量为2×(h-1)个,与DMD的分辨率无关。
由于DMD每个微镜单元响应特性的差异,经过线性化处理后,不同微镜单元的响应表现为近似直线的不同曲线。因此还需要通过非均匀性校正将各个微镜单元线性化后的响应曲线归一化到标准响应曲线上,如图 4所示。
考虑非均匀性校正实时性因素,校正过程采用分段校正方法。对于DMD任意一个位置(i, j)处的微镜单元,同样选取h个断点将其分为h-1个直线段。经过数学推导可得,每个直线段都对应一组由增益$ G_{i, j}^{{\rm{nuc}}, k}$和偏置$ O_{i, j}^{{\rm{nuc}}, k}$组成的修正数据,
$$ \left\{ \begin{array}{l} G_{i, j}^{{\rm{nuc}}, k} = \frac{{l_{i, j}^{{\rm{corr}}, k + 1} - l_{i, j}^{{\rm{corr}}, k}}}{{l_{i, j}^{{\rm{in}}, k + 1} - l_{i, j}^{{\rm{in}}, k}}}\\ O_{i, j}^{{\rm{nuc}}, k} = l_{i, j}^{{\rm{corr}}, k} - \frac{{l_{i, j}^{{\rm{corr}}, k + 1} - l_{i, j}^{{\rm{corr}}, k}}}{{l_{i, j}^{{\rm{in}}, k + 1} - l_{i, j}^{{\rm{in}}, k}}}l_{i, j}^{{\rm{in}}, k} \end{array} \right.\quad \begin{array}{*{20}{l}} {k = 1, \cdots , h - 1, }\\ {i = 1, \cdots , M, }\\ {j = 1, \cdots , N} \end{array} $$ (2) 式中:$l_{i, j}^{{\rm{corr}}, k} $、$l_{i, j}^{{\rm{corr}}, k + 1} $分别为分段点处校正后的标准响应输出; $l_{i,j}^{{\rm{in}},k} $、 $ l_{i,j}^{{\rm{in}},k + 1}$分别为分段点处的实际响应输出。将式(2)中的修正数据$(G_{i, j}^{{\rm{nuc}}, k}, O_{i, j}^{{\rm{nuc}}, k}) $增存于缓存以供非线性实时校正时使用,即为非均匀性校正查找表。如果DMD的分辨率为M×N,那么非均匀性校正查找表的数据量即为M×N×2×(h-1)。
通过上述的数据处理,分别生成了DMD红外场景产生器非均匀性校正所需的线性化查找表和非均匀性校正查找表。在非均匀性实时校正过程中仅需要根据输入在查找表中查找对应的参数进行修正即可,整个非均匀性实时校正流程如图 5所示。
中非均匀性实时校正主要分为以下两步:首先根据输入的期望辐射亮度 $l_{i,j}^{{\rm{in}}} $在非均匀性校正查找表中查找相应的修正参数,计算得到校正数据 $l_{i,j}^{{\rm{in}}} $;
$$ l_{i, j}^{{\rm{corr}}} = G_{i, j}^{{\rm{nuc}}, k} \cdot l_{i, j}^{{\rm{in}}} + O_{i, j}^{{\rm{nuc}}, k}\begin{array}{*{20}{c}} {}&{k = 1, 2, \cdots , h - 1} \end{array} $$ (3) 然后通过线性化查找表,计算 $l_{i,j}^{{\rm{corr}}} $所对应的控制占空比di, j,驱动DMD产生与期望相同的红外辐射亮度。
$$ {d_{i, j}} = G_{{\rm{line}}}^k \cdot l_{i, j}^{{\rm{corr}}} + O_{{\rm{line}}}^k\begin{array}{*{20}{c}} {}&{k = 1, 2, \cdots , h - 1} \end{array} $$ (4) 3. 数值仿真与分析
设DMD红外场景产生器单个微镜单元的输出响应为li, j,M和N分别为DMD的行数和列数,其非均匀性定义为输出响应标准差与均值之比,如公式(5)所示。
$$ {\rm{NUC}} = {\rm{Std}}({l_{i, j}})/{\rm{Mean}}({l_{i, j}}) $$ (5) 式中:
$$ {\rm{Mean}}({l_{i, j}}) = \frac{1}{{M \times N}}\sum\limits_{i = 1}^N {\sum\limits_{j = 1}^M {{l_{i, j}}} }, $$ $$ {\rm{Std}}({l_{i, j}}) = \sqrt {\frac{{\sum\limits_{i = 1}^N {\sum\limits_{j = 1}^M {({l_{i, j}}} } - {{\bar l}_{i, j}})}}{{M \times N - 1}}} 。 $$ 非均匀性校正算法的优劣主要取决于校正后残余非均匀性指标,其次还要兼顾对非均匀性校正参数存储量的需求。为验证本文所述非均匀校正算法的效果,在Matlab中对生成的模拟DMD进行仿真验证。以真实DMD微镜单元平均响应特性的实测数据作为模拟DMD的标准响应特性,在标准响应特性曲线采样点的输出数据上添加高斯噪声,模拟DMD红外场景产生器的非均匀性。最终生成的模拟DMD微镜单元的响应曲线如图 6所示。
首先,检验分段校正点个数对非均匀校正效果的影响。通过计算,当数值DMD所有微镜单元驱动占空比一致均为50%时,其原始输出的非均匀性为10.72%。通过设定不同分段点数对非均匀性校正算法分别进行了数值计算,结果如表 1所示。
表 1 不同分段点数非均匀性校正结果Table 1. The NUC results about different segmentation pointsNumber of segment points Residual non-uniformity 3 8.52% 6 4.42% 9 0.52% 12 0.49% 从仿真结果来看,适当增加分段点个数,可以显著降低残余非均匀性,不过达到一定量的时候,继续增加分段点个数不再显著降低剩余非均匀性。过多的分段点会增加校正数据的存储量,影响查表速度,因此需要根据实际需求确定分段校正点的个数,在满足校正精度需求的前提下尽量减少数据量。
为了验证在不同驱动占空比输入下DMD红外场景产生器非均匀性校正效果,设定分段点的数量为9且固定不变,选取输入为10%~100%的10组数据分别对非均匀性校正算法分别进行了数值计算,结果如表 2所示。
表 2 不同驱动占空比非均匀性校正结果Table 2. The NUC results about different drive duty cycleDrive duty cycle Residual non-uniformity (before correction) Residual non-uniformity (after correction) 10% 9.34% 0.42% 20% 9.77% 0.41% 30% 10.13% 0.45% 40% 10.32% 0.43% 50% 10.72% 0.52% 60% 10.71% 0.51% 70% 10.74% 0.52% 80% 10.42% 0.47% 90% 10.25% 0.43% 100% 10.11% 0.44% 从仿真结果来看,从未校正数值阵列在不同驱动占空比的非均匀性在10%左右,而校正后的残余非均匀性在0.5%左右,该非均匀性校正方法在不同驱动占空比下均具有较好的校正效果。
4. 结论
本文结合工程实际应用背景重点研究了DMD红外场景产生器的非均匀性校正方法。首先在深入研究传统稀疏网格测量方法的基础上,充分考虑DMD的红外辐射调制特性,提出了一种变尺度稀疏网格的非均匀性测量方法,该方法可根据测量信号的信噪比调整网格大小,有效解决了传统稀疏网格在低信噪比条件下测量困难的问题。然后研究了分段校正算法的原理与实现方法。最后利用模拟数值DMD对校正算法进行了仿真验证,在不同驱动占空比输入下该方法均可有效降低DMD红外场景产生器的非均匀性。下一步可以考虑在此研究基础上设计基于硬件平台的数据传输校正卡,将非均匀校正算法和参数固化于其中,在工程上实现对DMD红外场景产生器非均匀性的实时校正。
-
表 1 编码器组成结构
Table 1 Encoder composition
Layer Output size Channel Image 416×416 3 Conv1 208×208 24 MaxPool 104×104 Stage2 52×52 116 Stage3 26×26 232 Stage4 13×13 464 表 2 实验配置
Table 2 Experimental configuration
Parameters Configuration Operating system Ubuntu 20.04 RAM 32G CPU Intel core i5 12400 GPU Geforce RTX 3060 GPU acceleration environment CUDA11.3 Training framework Pytorch 表 3 算法实现的具体参数配置
Table 3 Specific parameter configuration for algorithm implementation
Parameters Configuration Model MAFSnet Training rounds 100 Batch size 32 Optimizer SGD 表 4 多模态融合策略
Table 4 Multimodal fusion strategy
Fusion Strategy AP50/% mAP/% Add 83.00 38.26 Mul 75.17 31.86 Cat 66.32 25.91 表 5 多模态融合的权重因子
Table 5 Weighting factors for multimodal fusion
μ λ AP50/% mAP/% 80.60 36.09 √ 80.71 36.69 √ 81.69 37.59 √ √ 83.00 38.26 表 6 损失函数
Table 6 Loss function
GFLoss GIoULoss AP50/% mAP/% √ 80.83 37.24 √ 78.17 36.87 √ √ 83.00 38.26 表 7 改进Ghost PAN的消融实验结果
Table 7 Improving the ablation experiment results of Ghost PAN
Model AP50/% mAP/% Flops/G Params/M Latency/s Nanodet Plus- Ghost PAN 79.10 35.14 0.757 4.164 0.0082 MAFSnet-Ghost PAN 79.66 36.26 0.757 4.164 0.0082 MAFSnet -our PAN 80.35 37.79 0.823 4.201 0.0086 MAFSnet-our PAN* 83.00 38.26 0.895 4.397 0.0090 表 8 不同算法结果对比
Table 8 Comparison of the results of different algorithms
Model Input shape AP50/% mAP/% Flops/G Params/M Latency/s YOLOv6-n 640×640 82.44 38.00 2.379 4.63 0.0068 YOLOX-tiny 416×416 82.70 36.52 3.199 5.033 0.0055 YOLOv8-n 640×640 81.99 37.52 1.72 3.011 0.0062 Nanodet Plus-m 416×416 79.1 35.1 0.757 4.164 0.0082 Ours 416×416 83.00 38.26 0.895 4.397 0.0090 -
[1] 张辰, 赵红颖, 钱旭. 面向无人机影像的目标特征跟踪方法研究[J]. 红外技术, 2015, 37(3): 224-228, 239. http://hwjs.nvir.cn/article/id/hwjs201503010 ZHANG Chen, ZHAO Hongying, QIAN Xu. Research on Target Feature Tracking Method for UAV Images[J]. Infrared Technology, 2015, 37(3): 224-228, 239. http://hwjs.nvir.cn/article/id/hwjs201503010
[2] 王宁, 李哲, 梁晓龙, 等. 无人机单载荷目标检测及定位联合实现方法[J]. 电光与控制, 2021, 28(11): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ202111021.htm WANG Ning, LI Zhe, LIANG Xiaolong, et al. Joint realization method of single payload target detection and positioning of UAV[J]. Electro-optic and Control, 2021, 28(11): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ202111021.htm
[3] 杨欣, 王刚, 李椋, 等. 基于深度卷积神经网络的小型民用无人机检测研究进展[J]. 红外技术, 2022, 44(11): 1119-1131. http://hwjs.nvir.cn/article/id/f016be54-e981-4314-b634-7c05912eb61e YANG Xin, WANG Gang, LI Liang, et al. Research progress in detection of small civilian UAVs based on deep convolutional neural networks [J]. Infrared Technology, 2022, 44(11): 1119-1131. http://hwjs.nvir.cn/article/id/f016be54-e981-4314-b634-7c05912eb61e
[4] 粟宇路, 苏俊波, 范益红, 等. 红外中长波图像彩色融合方法研究[J]. 红外技术, 2019, 41(4): 335-340. http://hwjs.nvir.cn/article/id/hwjs201904007 SU Yulu, SU Junbo, FAN Yihong, et al. Research on color fusion method of infrared medium and long wave images [J]. Infrared Technology, 2019, 41(4): 335-340. http://hwjs.nvir.cn/article/id/hwjs201904007
[5] 陈旭, 彭冬亮, 谷雨. 基于改进YOLOv5s的无人机图像实时目标检测[J]. 光电工程, 2022, 49(3): 69-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202203006.htm CHEN Xu, PENG Dongliang, GU Yu. Real-time target detection of UAV images based on improved YOLOv5s [J]. Optoelectronic Engineering, 2022, 49(3): 69-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202203006.htm
[6] Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 6517-6525.
[7] Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking[J/OL]. Computer Vision and Pattern Recognition, 2016. https://arxiv.org/abs/1606.09549
[8] 闫号, 戴佳佳, 龚小溪, 等. 基于多源图像融合的光伏面板缺陷检测[J]. 红外技术, 2023, 45(5): 488-497. http://hwjs.nvir.cn/article/id/9de7d764-d0af-4af8-9eb1-a1b94186c243 YAN Hao, DAI Jiajia, GONG Xiaoxi, et al. Photovoltaic panel defect detection based on multi-source image fusion [J]. Infrared Technology, 2023, 45(5): 488-497. http://hwjs.nvir.cn/article/id/9de7d764-d0af-4af8-9eb1-a1b94186c243
[9] MA Jiayi, MA Yong, LI Chang. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2019, 45: 153-178.
[10] 白玉, 侯志强, 刘晓义, 等. 基于可见光图像和红外图像决策级融合的目标检测算法[J]. 空军工程大学学报: 自然科学版, 2020, 21(6): 53-59, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC202006009.htm BAI Yu, HOU Zhiqiang, LIU Xiaoyi, et al. Target detection algorithm based on decision-level fusion of visible light images and infrared images [J]. Journal of Air Force Engineering University: Natural Science Edition, 2020, 21(6): 53-59, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC202006009.htm
[11] 宁大海, 郑晟. 可见光和红外图像决策级融合目标检测算法[J]. 红外技术, 2023, 45(3): 282-291. http://hwjs.nvir.cn/article/id/5340b616-c317-4372-9776-a7c81ca2c729 NING Dahai, ZHENG Sheng. Decision-level Fusion Object Detection Algorithm for Visible and Infrared Images[J]. Infrared Technology, 2023, 45(3): 282-291. http://hwjs.nvir.cn/article/id/5340b616-c317-4372-9776-a7c81ca2c729
[12] 马野, 吴振宇, 姜徐. 基于红外图像与可见光图像特征融合的目标检测算法[J]. 导弹与航天运载技术, 2022(5): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH202205016.htm MA Ye, WU Zhenyu, JIANG Xu. Target detection algorithm based on feature fusion of infrared image and visible light image [J]. Missile and Space Vehicle Technology, 2022(5): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH202205016.htm
[13] 刘建华, 尹国富, 黄道杰. 基于特征融合的可见光与红外图像目标检测[J]. 激光与红外, 2023, 53(3): 394-401. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202303010.htm LIU Jianhua, YIN Guofu, HUANG Daojie. Object detection in visible and infrared images based on feature fusion [J]. Laser and Infrared, 2023, 53(3): 394-401. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202303010.htm
[14] 解宇敏, 张浪文, 余孝源, 等. 可见光-红外特征交互与融合的YOLOv5目标检测算法[J/OL]. 控制理论与应用, http://kns.cnki.net/kcms/detail/44.1240.TP.20230511.1643.024.html. XIE Yumin, ZHANG Langwen, YU Xiaoyuan, etc. YOLOv5 target detection algorithm based on interaction and fusion of visible light-infrared features [J/OL]. Control theory and application, http://kns.cnki.net/kcms/detail/44.1240.TP.20230511.1643.024.html.
[15] RangiLyu. NanoDet-Plus: Super fast and high accuracy lightweight anchor-free object detection model[EB/OL]. https://github.com/RangiLyu/nanodet, 2021.
[16] MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 116-131.
[17] LI X, WANG W, WU L, et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33: 21002-21012.
[18] JIANG Nan, WANG Kuiran, PENG Xiaoke. Anti-UAV: A Large-Scale Benchmark for Vision-Based UAV Tracking[J]. IEEE Transactions on Multimedia, 2023, 25: 486-500, DOI: 10.1109/TMM.2021.3128047.
[19] ZHAO J, WANG G, LI J, et al. The 2nd Anti-UAV workshop & challenge: Methods and results[J/OL]. arXiv preprint arXiv: 2108.09909, 2021.
[20] LI C, LI L, JIANG H, et al. YOLOv6: A single-stage object detection framework for industrial applications[J/OL]. arXiv preprint arXiv: 2209.02976, 2022.
[21] GE Z, LIU S, WANG F, et al. Yolox: Exceeding yolo series in 2021[J/OL]. arXiv preprint arXiv: 2107.08430, 2021.
[22] Github. Yolov5[EB/OL]. https://github.com/ultralytics/yolov5, 2021.
[23] LI B, XIAO C, WANG L, et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing, 2022, 32: 1745-1758.
-
期刊类型引用(1)
1. 姚雪峰,高毅,龙兵,于晨阳,李文昊,于宏柱,张靖,李晓天. 数字微镜器件(DMD)杂散光特性测试方法及装置. 中国光学. 2022(02): 339-347 . 百度学术
其他类型引用(0)