Advances in Underwater Photoelectric Imaging Technology
-
摘要: 随着我国海洋、江河和地下水资源勘探、开发和利用的日益深入,以及领海主权防卫的军事需求日趋迫切,在水下获取远距离条件下高质量的目标图像已成为水下环境勘测、目标探测与敌我对抗等许多领域迫切需要解决的问题。目前,水下成像探测技术主要有声探测和光电探测两种途径。本文研究了目前主要水下高分辨力光电探测成像技术现状,分析了不同技术途径的优缺点,对比了各种水下探测/成像系统中采用的光电探测器的情况,结合自身技术背景,提出了应加快发展高灵敏度、低噪声、高增益、快响应、宽动态范围、良好线性度的GaAsP光阴极双微通道板像增强器,从而简化光电系统中因探测器性能不佳带来的灵敏度低、噪声大、增益低、处理时间长等不足,加速各种新技术向产品、实用化设备的转化。本文成果对水下光电成像技术发展将有一定支撑作用。Abstract: With the increasing exploration, development, and utilization of China's oceans, rivers, and groundwater resources, as well as the increasingly urgent military need for sovereign defense in territorial waters, obtaining high-quality target images under long-distance underwater conditions has become an urgent problem to be solved in many fields, such as underwater environmental surveys, target detection, and enemy-self confrontation. Currently, the underwater imaging detection technology includes two main methods: acoustic and photoelectric detection. In this study, the current status of the main underwater high-resolution photoelectric detection imaging technology is studied, the advantages and disadvantages of different technical approaches are analyzed, and the photodetectors used in various underwater detection/imaging systems are compared. Combined with its own technical background, it is proposed that the development of a GaAsP photocathode dual microchannel plate image intensifier with high sensitivity, low noise, high gain, fast response, wide dynamic range, and good linearity should be accelerated to simplify the low sensitivity, high noise, low gain, and long processing time, owing to the poor performance of the detector in the photoelectric system, and accelerate the conversion speed of various new technologies into products and practical equipment. The results of this study support the development of underwater photoelectric imaging technology.
-
Keywords:
- underwater detection /
- photoelectric imaging /
- detector
-
0. 引言
红外热像仪在变电设备的热故障监测具有广泛的应用,但单帧红外图像普遍存在视场窄、分辨率低等缺点,难以准确、及时地获取变电设备的整体状态[1]。通过图像拼接可将若干存在重叠区域的图像拼接成一幅无缝、无重影的宽视场图像,有助于监测变电设备整体的状态,提高巡检效率。但传统最佳缝合线或渐入渐出融合法进行融合时,往往会导致重叠区域存在明显的拼接痕迹或重影现象。因此研究一种适用于变电设备的红外图像拼接方法具有十分重要的意义。
针对成像场景不同而导致红外图像间存在亮度差异问题,文献[2]等提出了一种改进的红外图像拼接算法,该算法采用平台直方图均衡化提高红外图像对比度,解决了因图像亮度差异而导致的拼接痕迹,但该算法对变电站复杂场景的适应性并不强。而文献[3]通过在感兴趣区域中提取SIFT特征点并结合KLT(Kanade-Lucas-Tomasi)跟踪算法确定特征点的位置信息并进行匹配,采用渐入渐出融合算法消除拼接痕迹,使得配准率提高了3.491%。文献[4]引入图像梯度信息,利用像素亮度差计算重叠区域的边权值,并采用图切割法寻求最佳缝合线,最后利用渐入渐出方法融合过渡,对于序列遥感图像的拼接取得了较好效果,但对于变电站红外图像拼接存在鬼影现象。文献[5]为解决图像融合中运动物体与缝合线过于靠近而造成鬼影的问题,引入颜色饱和度S改进能量函数,并在最佳缝合线搜索准则中加入局部信息权重来提高搜索灵活度,一定程度上消除了因运动物体靠近缝合线而产生的鬼影,但对于噪声严重的变电站红外图像拼接存在一定的局限性。
上述研究成果为变电站红外图像拼接提供较好的参考思路,但由于成像环境复杂、红外图像噪声干扰大,导致部分图像拼接出现明显的拼接痕迹或重影现象。因此,本文提出一种改进最佳缝合线的红外图像拼接方法,该方法在拼接区域上引入局部权重系数,并对图像颜色差异强度进行形态学操作抑制噪声干扰,并通过动态规划改进缝合线搜索准则,搜索出最佳缝合线。
1. 改进的最佳缝合线算法
为改善因成像环境复杂而造成配准效果不佳的问题,本文首先使用SIFT算法对图像进行配准,从而实现图像的一次拼接[6],然后再采用最佳缝合线算法进行图像融合[7]。
1.1 最佳缝合线获取
最佳缝合线的目的是使得拼接线从两幅图像重叠区域中差异最小的位置穿过,以尽可能地减少图像的偏差而带来拼接痕迹。其求解准则E(x, y)为:
$$ E(x, y) = E_{\text{c}}^2(x, y) + {E_{{\text{geometry}}}}(x, y) $$ (1) 式中:Ec(x, y)为图像颜色差异强度值;Egeometry(x, y)为图像结构差异强度值。Ec(x, y)表达式为:
$$ {E_{\rm{c}}}(x,y) = {I_{{\rm{gray}}}}_1(x,y) - {I_{{\rm{gray}}}}_2(x,y) $$ (2) 式中:Igray1(x, y)和Igray2(x, y)分别表示两幅待拼接图像I1和I2对应的灰度图。
而Egeometry(x, y)表达式为:
$$ {E_{{\text{geometry}}}}(x, y){{ = }}{\rm{Diff}}{\text{(}}{I_1}{\text{(}}x, y{\text{) , }}{I_2}{\text{(}}x, y{\text{))}} $$ (3) 式中:Diff为计算I1和I2两幅图像在x和y方向梯度差的乘积因子。
1.2 能量函数的改进
红外图像相较于可见光图像而言,其边界模糊,信噪比低,采用式(1)求解准则所得到的能量函数图存在较多噪声,图像的边缘信息模糊,如图 1(a)所示,搜索到的最佳缝合线往往不是从能量差异值最小的位置穿过,容易导致拼接重叠区域存在明显拼缝或重影。
因此,对能量函数改进,在式(1)中引入权重系数ωxy,并对图像颜色差异强度值Ecolor(x, y)的求解进行改进,求解准则Ea(x, y)定义为:
$$ {E_{\rm{a}}}(x, y) = {\omega _{xy}}(E_{{\text{color}}}^2(x, y) + {E_{{\text{geometry}}}}(x, y)) $$ (4) 式中:Ecolor(x, y)为改进后的图像颜色差异强度值;而Egeometry(x, y)通过式(3)求解;ωxy为I1和I2重叠区域上点(x, y)处加权值。
$$ {\omega _{xy}} = \left\{ {\begin{array}{*{20}{c}} {k\frac{{{\delta _{xy}}}}{{{\delta _{\text{M}}}}}}&{{\delta _{xy}} < 0.7{\delta _{\text{M}}}} \\ { + \infty }&{{\text{others}}} \end{array}} \right. $$ (5) 式中:k为差异图像加权系数;δxy为I1和I2重叠区域上点(x, y)处的差异值,δM=max(δxy)。δxy定义为:
$$ {\delta _{xy}}{\text{ = }}\frac{{\left| {{I_1}{\text{(}}x, y{\text{) }} - {I_2}{\text{(}}x, y{\text{)}}} \right|}}{{\max {\text{(}}{I_1}{\text{(}}x, y{\text{) , }}{I_2}{\text{(}}x, y{\text{))}}}} $$ (6) 引入形态学操作对Ecolor(x, y)的求解进行改进,采用灰度差图像的绝对值来近似计算,则:
$$ E_{{\text{color}}}^{}(x, y) = \left\{ \begin{gathered} {I_{12}}(x, y) \times {W_{{\text{color}}}}\quad {I_{\text{bin}}}(x, y) = 1 \hfill \\ {I_{12}}(x, y)\quad \quad \quad \;\, \, {I_{\text{bin}}}(x, y) = 0\; \hfill \\ \end{gathered} \right. $$ (7) 式中:I12为灰度差图像;Ibin为二值图像;Wcolor为权重系数。
灰度差图像I12通过式(8)求解:
$$ {I_{12}}(x, y) = {\text{abs(}}{I_{\text{gray}}}_1(x, y) - {I_{\text{gray}}}_2(x, y){\text{)}} $$ (8) 二值图像Ibin根据式(9)求解:
$$ {I_{{\rm{bin}}}}(x,y)= \left\{ {\begin{array}{*{20}{c}} 1&{({I_{12}}(x, y) \geqslant 1.5 \times {\rm{Imag}}{{\rm{e}}_{{\rm{avg}}}})} \\ 0&{({I_{12}}(x, y) < 1.5 \times {\rm{Imag}}{{\rm{e}}_{{\rm{avg}}}})} \end{array}} \right. $$ (9) 式中:Imageavg为灰度差图像I12重叠区域内(x, y)像素的平均值。
图 1(a)和图 1(b)分别为改进前与本文改进后的能量函数图。通过对比可以发现,图 1(a)噪声较多,纹理不清晰;图 1(b)图像中大量噪声已经被滤除,同时也保留了图像重要的纹理信息,图像目标边缘和结构信息更清晰,更能突显红外图像的颜色差异与结构差异。
1.3 动态规划搜索
传统的最佳缝合线搜索路径时,仅搜索所在位置下一行中的3个紧邻点,最大仅能向下方45°方向扩展,搜索路径上存在一定限制。因此,本文对搜索方法进行改进,由原来只搜索3个紧邻点扩展至搜索下一行中9个紧邻点,改进的搜索流程图,如图 2所示。
① 设两幅待拼接图像I1和I2的重叠区域列数为m,把图像重叠区域中第一行的每个像素点作为缝合线的初始点,即m列对应m条缝合线;
② 搜索缝合线的扩展点。选择每条缝合线当前点(x, k)下一行的9个紧邻点作为备选扩展点,当前点与备选扩展点之间路径的能量值计算公式为:
$$ {E_{{\text{sum}}}}(x, y){\text{ = }}\left\{ {\begin{array}{*{20}{c}} {\sum\limits_{i{\text{ = }}k + 1}^y {{E_{\text{N}}}(x, i)} }&{0 < y - k \leqslant 4} \\ 0&{y = k} \\ {\sum\limits_{i{\text{ = }}y}^{k - 1} {{E_{\text{N}}}(x, i)} }&{ - 4 \leqslant y - k < 0} \end{array}} \right. $$ (10) 式中:Esum(x, y)表示第x行中的第y列到第k列之间所有点的能量值之和。EN(x, i)为点(x, i)的能量值。
将每个备选扩展点的能量值与式(10)计算路径的能量值Esum(x, y)相加,得到备选扩展点总的能量值。进而一一比较每个备选扩展点总的能量值,选择最小值Es(x+1, y)的备选扩展点作为缝合线的扩展点。Es(x+1, y)的计算式为:
$$ {E_{\text{s}}}(x{\text{ + }}1, y){\text{ = }}\mathop {\min }\limits_{k - 4 \leqslant y \leqslant k + 4} ({E_{\text{N}}}(x + 1, y) + {E_{{\text{sum}}}}(x, y)) $$ (11) 式中:k为缝合线扩展当前点(x, k)前所在的列,x+1、y为当前点在下一行备选扩展点的行、列。确定新扩展点后,更新得到缝合线扩展后的能量值S(x+1, y),即:
$$ S(x+1, y)=S(x, k)+E_{2}(x+1, y) $$ (12) 式中:S(x, k)表示缝合线扩展前的能量值。
③ 完成当前行后继续返回步骤②扩展下一行的点,直至扩展至图像最后一行,跳转到步骤④;
④ 经过前面3个步骤,得到m条缝合线。从m条缝合线中,将能量值最小的缝合线选定为最佳缝合线。
1.4 算法实现流程
改进最佳缝合线的红外图像拼接算法流程图,如图 3所示。
先采用SIFT算法提取图像区域特征,实现图像配准;然后在重合区域上引入局部权重系数对图像颜色差异强度进行形态学操作,抑制噪声干扰进而改善能量函数图的纹理信息;最后通过动态规划改进缝合线搜索准则,搜索出最佳缝合线,进而完成图像拼接。
2. 红外图像拼接实验验证与分析
为了验证算法的有效性,将本文方法与渐入渐出法、ORB算法、基于颜色校正的全景图像拼接方法[8]、传统最佳缝合线法进行对比实验,实验平台为PyCharm2019+Python3.6。
2.1 红外图像拼接效果分析
2.1.1 绝缘子红外图像拼接
使用红外热像仪采集绝缘子图像,分辨率为384×288。绝缘子图像如图 4所示。
对图 4的红外图像进行初步拼接,然后由最佳缝合线求解准则得到能量函数图,再通过动态规划方法搜索到缝合线,如图 5所示。
由图 5(a)和图 5(b)可知,改进前能量函数图的噪声严重,缝合线受噪声干扰较大,改进后能量函数图的噪声得到了明显抑制,使得图像重叠区域的结构和边缘更清晰,缝合线很好地沿着能量最低的区域经过,避免拼接图像出现局部错位。
不同算法的拼接效果如图 6所示。由图得知,通过渐入渐出法拼接后的图像,在电缆处出现明显重影。采用ORB算法拼接的图像,在绝缘子顶部的电缆接头处存在噪声斑点。基于颜色校正的全景图像拼接方法得到的图像,虽然噪声斑点较少,但是在电缆处存在明显的重叠和错位现象。采用传统最佳缝合线法拼接的图像同样存在错位现象。
相对于以上算法的拼接结果,采用本文改进最佳缝合线法拼接的图像,图像中局部放大区域未出现重影,融合的过渡区域无错位现象,细节更加清晰。这有助于后续获取变电设备的细节信息,从而更加高效地监测电气设备的整体状态。
2.1.2 变压器红外图像拼接
使用红外热像仪采集的变压器图像如图 7所示。
对图 7的红外图像进行初步拼接,然后由最佳缝合线求解准则得到能量函数图,再通过动态规划方法搜索找到缝合线,如图 8所示。
通过图 8(a)和图 8(b)对比可知,改进前能量函数图的噪声严重,缝合线受噪声干扰较大;改进后能量函数图去除了大部分干扰信息,图像重叠区域的结构和边缘更清晰,使得缝合线能很好地沿着能量最低的区域经过,能有效避免拼接图像局部出现变形错位。
不同算法的拼接效果如图 9所示。由图得知,采用渐入渐出法拼接后的图像,虽然没有明显的拼接缝隙,但在图像重叠区域边缘出现了重影现象。基于ORB算法的拼接图像同样出现重影现象。基于颜色校正的全景图像拼接方法拼接后的图像,由于图像配准存在偏差,导致图像出现错位现象。传统最佳缝合线法拼接后的图像,虽然没有明显的重影现象,但在融合区域存在拼接痕迹。
本文改进最佳缝合线法拼接后的图像,由于最大限度地避免缝合线穿过两幅图像差异较大的区域,相对以上算法的拼接结果,均未出现重影和错位现象,整体视觉效果更好。
2.2 红外图像拼接质量评价
为评价改进算法的效果,反映红外图像的细节信息,选取了文献[9]所用的平均梯度AG、图像清晰度FD和图像边缘强度EI指标衡量改进算法的图像拼接效果。
平均梯度AG表示图像平滑程度,反映图像细节反差能力,其数值越高,表示图像信息更丰富,图像细节保留更好,拼接效果过渡更自然。计算式为:
$$ {A_{\rm{G}}} = \frac{1}{{M \times N}}\sum\limits_{i = 1}^M {\sum\limits_{j = 1}^N {\sqrt {\frac{1}{2}\left( {{{\left( {{{\partial f} / {\partial x}}} \right)}^2} + {{\left( {{{\partial f} / {\partial y}}} \right)}^2}} \right)} } } $$ (13) 式中:M×N为图像的尺寸;∂f/∂x表示图像在水平方向的梯度,而∂f/∂y表示图像在垂直方向的梯度。
图像清晰度FD反映细节纹理信息,数值越高,表示图像的清晰程度越好,细节保留得越好。图像边缘强度EI则反映图像的边缘信息,其数值越高,表示图像边缘越清晰。
表 1给出了平均梯度AG、图像清晰度FD和图像边缘强度EI的评价结果,从表中的数据可以看出:在绝缘子和变压器图像拼接实验中,采用本文改进的最佳缝合线方法与渐入渐出法、ORB算法、基于颜色校正的全景图像拼接方法和传统最佳缝合线方法相比,平均梯度AG的均值分别提高了2.74%、14.84%、8.54%和1.18%,这表明图像的信息更丰富,图像细节保留更好。图像清晰度FD的均值分别提高了3.27%、21.03%、8.75%和1.5%,即改进算法的拼接图像效果清晰度更好。边缘强度EI的均值分别提高了2.40%、5.7%、0.93%和1.05%,这表明改进算法在红外图像拼接中,图像边缘清晰度更好。
表 1 拼接效果性能评价指标Table 1. Performance evaluation of image fusion algorithmsExperiment Algorithm AG FD EI Insulator image Fade in and fade out algorithm 7.0990 9.5881 70.8824 Image stitching based on ORB algorithm 6.6598 8.4017 68.6762 Fast Panorama Stitching method based on color correction 7.0382 9.4342 70.6413 The traditional best seam-line method 7.1702 9.6849 71.4189 The improved best seam-line method 7.1971 9.7345 71.6704 The transformer image Fade in and fade out algorithm 5.9331 6.8986 63.6720 Image stitching based on ORB algorithm 5.0789 5.7405 61.6745 Fast Panorama Stitching method based on color correction 5.3790 6.3366 65.7563 The traditional best seam-line method 6.0560 7.0687 64.8862 The improved best seam-line method 6.1768 7.2439 66.0150 3. 结论
本文针对变电站场景的红外图像,提出了一种改进最佳缝合线的红外图像拼接方法。利用改进的算法进行图像拼接后,图像融合区域过渡更平滑,拼接痕迹明显减少,且拼接后的图像在平均梯度、图像清晰度和图像边缘强度均有所提高,有效地避免了结果图像出现明显拼接痕迹等问题,有助于后续获取变电设备整体的准确状态,对提高巡检效率具有重要意义。
-
图 16 成像效果对比图[54]:(a) 字母“XiDian UNIVERSITY”的原始图像;(b) 字母“XiDian UNIVERSITY”的被动水下偏振成像方法的结果;(c) 地中海的原始图像;(d) 地中海被动水下偏振成像方法的结果;(e) 图(d)中A区域的放大结果;(f) 图(d)中B区域的放大结果
Figure 16. Comparison of imaging effects[54]: (a) The original image of the letters"XiDian UNIVERSITY"; (b) The results by passive underwater polarization imaging method of the letters" XiDian UNIVERSITY"; (c) The original image of the Mediterranean; (d) The results by passive underwater polarization imaging method of the Mediterranean; (e) The enlarged result of area A in Fig (d); (f) The enlarged result of area B in Fig (d)
表 1 各种水下光电成像技术的对比
Table 1 Comparison of various underwater photoelectric imaging technologies
Underwater imaging technology Advantages Fault Range-gated imaging High spatial resolution, small detector unit size, low cost and high imaging quality The requirements for laser, receiver and synchronous control technology are high Laser line scanning The imaging distance is far and the image precision is high The system has complex structure, high cost and large volume Structured light imaging technology With high integration, low cost and high resolution, underwater three-dimensional micro-topography can be obtained Fast and convenient measurement cannot be carried out, and the measurement accuracy is not high enough Scattering light computational imaging technology It has high imaging resolution, long detection distance, large optical field of view and low volume power consumption The process of establishing the model is not easy, the algorithm calculation process is complex, and the calculation amount is large. Polarized light imaging technology More information can be detected, and the detection ability in turbid water is strong. Color images can be obtained under special conditions. The stability of the system is general and easily affected by environmental factors. Underwater ghost imaging technology High sensitivity, anti-interference, wide working wavelength and long imaging distance. The structure complexity is very high, and the performance stability is not good enough. Underwater imaging based on deep learning Excellent imaging quality, strong adaptability and simple structure The construction, training and optimization of neural network are complex. 表 2 各种水下光电成像/探测系统的探测器的对比分析
Table 2 comparative analysis of detectors for various underwater photoelectric imaging/detection systems
Detector name Sensitivity of underwater blue-green light Dark current Response time Gain Linearity Photomultiplier tube High Low Fast High Good Avalanche photo diode Common High Common High Good Single photon detector High Common Common High Good Low-light-level image intensifier High Low Fast High Good CCD/CMOS Common Common Common Common Good -
[1] 曾晓光, 金伟晨, 赵羿羽, 等. 海洋开发装备技术发展现状与未来趋势研判[J]. 舰船科学技术, 2019, 41(17): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201917002.htm ZENG Xiaoguang, JIN Weichen, ZHAO Yiyu, et al. Current situation and development of marine development equipment technology[J]. Ship Science and Technology, 2019, 41(17): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201917002.htm
[2] 吕文磊, 张旭, 刘可. 一种距离选通水下激光成像系统设计与实验研究[J]. 兵器装备工程学报, 2019, 40(8): 198-202. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201908039.htm LV Wenlei, ZHANG Xu, LIU Ke. Design and experimental study on a range-gated underwater laser imaging system[J]. Arsenal of Ordnance Equipment Engineering, 2019, 40(8) : 198-202. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201908039.htm
[3] 姜朝宇, 罗涛, 王亚波, 等. 水下线状目标距离选通成像探测研究[J]. 舰船科学技术, 2018, 40(19): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201819026.htm JIANG Chaoyu, LUO Tao, WANG Yabo, et al. Experimental study on underwater linear objects detection using underwater range gated imaging method[J]. Ship Science and Technology, 2018, 40(19): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201819026.htm
[4] 王书宇, 艾磊, 陶声祥, 等. 便携式远距离激光选通成像系统研究[J]. 兵器装备工程学报, 2018, 39(9): 166-170. DOI: 10.11809/bqzbgcxb2018.09.035 WANG Shuyu, AI Lei, TAO Shengxiang, et al. Research on portable long range laser range-gated imaging system[J]. Journal of Ordnance Equipment Engineering, 2018, 39(9) : 166-170. DOI: 10.11809/bqzbgcxb2018.09.035
[5] 曹峰梅, 金伟其, 黄有为, 等. 水下光电成像技术与装备研究进展(上)——水下激光距离选通技术[J]. 红外技术, 2011, 33(2): 63-69. DOI: 10.3969/j.issn.1001-8891.2011.02.001 CAO Fengmei, JIN Weiqi, HUANG Youwei, et al. Review of underwater opto-electrical imaging technology and equipment(Ⅰ)——underwater laser range-gated imaging technology[J]. Infrared Technology, 2011, 33(2): 63-69. DOI: 10.3969/j.issn.1001-8891.2011.02.001
[6] 王红萍, 熊俊. 水下激光成像测量技术应用研究[J]. 舰船电子工程, 2019, 39(7): 10-12, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC201907004.htm WANG Hongping, XIONG Jun. Study on application of the underwater laser imaging technique[J]. Ship Electronic Engineering, 2019, 39(7): 10-12, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC201907004.htm
[7] 全向前, 陈祥子, 全永前, 等. 深海光学照明与成像系统分析及进展[J]. 中国光学, 2018, 11(2): 153-165. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201802001.htm QUAN Qian, CHEN Xiangzi, QUAN Yongqian, et al. Analysis and research progress of deep-sea optical illumination and imaging system [J]. China Optics, 2018, 11(2): 153-165. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201802001.htm
[8] 张清博, 张晓晖, 韩宏伟. 基于改进生成对抗网络的水下激光图像后向散射光修复方法[J]. 激光与光电子学进展, 2019, 56(4): 114-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201904011.htm ZHANG Qingbo, ZHANG Xiaohui, HAN Hongwei. Backscattered light repairing method for underwater laser image based on improved generative adversarial network[J]. Progress of Laser and Optoelectronics, 2019, 56(4): 114-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201904011.htm
[9] 赵阳, 盖志刚, 赵杰, 等. 距离选通水下激光成像技术研究[J]. 物流工程与管理, 2014, 36(7): 269-270. https://www.cnki.com.cn/Article/CJFDTOTAL-SPCY201407094.htm ZHAO Yang, GAI Zhigang, ZHAO Jie, et al. Research on range-gated underwater laser imaging technology[J]. Logistics Engineering and Management, 2014, 36(7): 269-270. https://www.cnki.com.cn/Article/CJFDTOTAL-SPCY201407094.htm
[10] 孙健, 周亚民. 距离选通激光水下成像系统研究[J]. 舰船电子工程, 2009, 29(2): 24-26, 46. DOI: 10.3969/j.issn.1627-9730.2009.02.007 SUN Jian, ZHOU Yamin. Research on the underwater laser range-gated imaging system[J]. Ship Electronic Engineering, 2009, 29(2): 24-26, 46. DOI: 10.3969/j.issn.1627-9730.2009.02.007
[11] 赵美晶. 水下偏振鬼成像方法研究[D]. 大连: 大连海事大学, 2019. ZHAO Meijing. Research on Underwater Polarization Ghost Imaging Method [D]. Dalian : Dalian Maritime University, 2019.
[12] Duntley S Q. Light in the sea[J]. J. Opt. Soc. Am., 1963, 53(2): 214-233. DOI: 10.1364/JOSA.53.000214
[13] 梁磊. 复杂水下环境的目标偏振成像探测技术[D]. 桂林: 桂林电子科技大学, 2020. LIANG Lei. Target Polarization Imaging Detection Technology for Complex Underwater Environment[D]. Guilin: Guilin University of Electronic Science and Technology, 2020.
[14] 谭亚运. 水下脉冲激光近程周向扫描探测技术研究[D]. 南京: 南京理工大学, 2017. TAN Yayun. Research on Short-range Circumferential Scanning Detection Technology of Underwater Pulsed Laser[D]. Nanjing: Nanjing University of Science and Technology, 2017.
[15] 胡玲, 王霞, 延波, 等. 水下距离选通成像系统调制传递函数模型分析[J]. 红外与激光工程, 2015, 44(11): 3262-3269. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201511017.htm HU Ling, WANG Xia, YAN Bo, et al. Analysis of underwater range-gated imaging system MTF[J]. Infrared and Laser Engineering, 2015, 44(11) : 3262-3269. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201511017.htm
[16] 付学志, 王庆胜, 邓代竹, 等. 距离选通水下激光成像作用距离简化核算方法[J]. 激光与红外, 2021, 51(3): 306-310. DOI: 10.3969/j.issn.1001-5078.2021.03.008 FU Xezhi, WANG Qingsheng, DENG Daizhu, et al. A simplified accounting method for the range of distance separation laser imaging under water[J]. Laser and infrared, 2021, 51(3): 306-310. DOI: 10.3969/j.issn.1001-5078.2021.03.008
[17] 王磊, 徐智勇, 张启衡, 等. 蓝绿激光水下成像系统的探测灵敏度分析[J]. 红外与激光工程, 2012, 41(1): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201201015.htm WANG Lei, XU Zhiyong, ZHANG Qiheng, et al. Detection sensitivity analysis of underwater blue-green laser imaging system[J]. Infrared and Laser Engineering, 2012, 41(1): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201201015.htm
[18] 许廷发, 苏畅, 罗璇, 等. 水下距离选通降质图像的增强[J]. 北京理工大学学报, 2017, 37(8): 853-857, 862. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201708015.htm XU Tingfa, SU Chang, LUO Xuan, et al. Enhancement of the underwater range-gated degraded image[J]. Journal of Beijing University of Technology, 2017, 37(8) : 853-857, 862. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201708015.htm
[19] 王新伟, 孙亮, 雷平顺, 等. 水下超视距三角形距离能量相关三维成像(特邀)[J]. 红外与激光工程, 2018, 47(9): 903001-0903001(8). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201809002.htm WANG Xinwei, SUN Liang, LEI Pingshun, et al. Underwater over-the-horizon triangle distance energy-related three-dimensional imaging (invited)[J]. Infrared and Laser Engineering, 2018, 47(9): 903001-0903001(8). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201809002.htm
[20] 王新伟, 孙亮, 王敏敏, 等. 水下二维及三维距离选通成像去噪技术研究[J]. 红外与激光工程, 2020, 49(2): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002004.htm WANG Xinwei, SUN Liang, WANG Minmin, et al. Deblurring methods for underwater 2D and 3D range-gated imaging [J]. Infrared and Laser Engineering, 2020, 49(2): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002004.htm
[21] 孙骁禾. 水下激光同轴同步扫描成像系统[D]. 青岛: 中国海洋大学, 2005. SUN Xiaohe. Underwater Laser Coaxial Synchronous Scanning Imaging System[D]. Qingdao: Ocean University of China, 2005.
[22] Caimi F M, Dalgleish F R, Giddings T E, et al. Pulse versus CW laser line scan imaging detection methods: simulation results[C]//Proc. MTS/IEEE Oceans Europe, 2007: 1-4.
[23] 戴佳佳. 基于结构光的三维成像技术研究[D]. 成都: 电子科技大学, 2022. DAI Jiajia. Research on 3D imaging technology based on structured light[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[24] 周永昊. 基于线结构光的水下微形貌三维信息获取技术研究[D]. 郑州: 华北水利水电大学, 2021. ZHOU Yonghao. Research on 3D Information Acquisition Technology of Underwater Micro-topography Based on Line Structured Light [D]. Zhengzhou: North China University of Water Resources and Hydropower, 2021.
[25] 苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光, 2014, 41(2): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201508020.htm SU Xianyu, ZHANG Qican, CHEN Wenjing. Structured light three-dimensional imaging technology[J]. China Laser, 2014, 41(2): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201508020.htm
[26] González E P, Díaz-Pache F S T, Mosquera L P, et al. Bidimensional measurement of an underwater sediment surface using a 3D-scanner[J]. Optics & Laser Technology, 2007, 39(3): 481-489.
[27] Prats M, Fernandez J J, Sanz P J. An approach for semi-autonomous recovery of unknown objects in underwater environments[C] //13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) of IEEE, 2012: 1452-1457.
[28] 赫连雪艳. 水下结构光三维测量系统建模与标定[D]. 郑州: 华北水利水电大学, 2020. HE Lianxueyan. Modeling and Calibration of Underwater Structured Light Three-dimensional Measurement System[D]. Zhengzhou: North China University of Water Resources and Hydropower, 2020.
[29] 王玲玲. 基于双目立体视觉的水下三维重建[D]. 杭州: 浙江大学, 2011. WANG Lingling. Underwater 3D Reconstruction Based on Binocular Stereo Vision[D]. Hangzhou: Zhejiang University, 2011.
[30] 乔金鹤. 基于双目立体视觉的水下三维重建技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. QIAO Jinhe. Research on Underwater 3D Reconstruction Technology Based on Binocular Stereo Vision[D]. Harbin: Harbin Engineering University, 2018.
[31] 李文莉. 面向水下三维重建的光视觉特征提取与匹配方法研究[D]. 沈阳: 沈阳理工大学, 2017. LI Wenli. Research on Optical Visual Feature Extraction and Matching Methods for Underwater Three-dimensional Reconstruction[D]. Shenyang : Shenyang University of Technology, 2017.
[32] 丁万山, 刘艳. 水中物体的光学三维形貌测量的研究[J]. 光学学报, 2007(1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200701012.htm DING Wanshan, LIU Yan. Optical measurement of object's surface three-dimensional shape in water[J]. Journal of Optics, 2007(1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200701012.htm
[33] 王宗义. 线结构光视觉传感器与水下三维探测[D]. 哈尔滨: 哈尔滨工程大学, 2005. WANG Zongyi. Line Structured Light Vision Sensor and Underwater Three-dimensional Detection[D]. Harbin: Harbin Engineering University, 2005.
[34] Narasimhan S G, Nayar K, Sun B, et al. Structured light in scattering media[C]//Proc. of IEEE, 2005, 1: 420-427.
[35] Levoy M, CHEN B, Vaish V, et al. Synthetic aperture confocal imaging[J]. ACM Trans Graphics, 2004, 23: 825-834.
[36] 邵晓鹏, 刘飞, 李伟, 等. 计算成像技术及应用最新进展[J]. 激光与光电子学进展, 2020, 57(2): 11-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202002002.htm SHAO Xiaopeng, LIU Fei, LI Wei, et al. Latest progress in computational imaging technology and application[J]. Advances in Laser and Optoelectronics, 2020, 57(2): 11-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202002002.htm
[37] VELLEKOOP I M, AEGERTER C M. Focusing light through living tissue[C]//SPIE, 2010, 7554: 755430.
[38] VELLEKOOP I M. Feedback-based wavefront shaping[J]. Optics Express, 2015, 23(9): 12189-12206.
[39] VELLEKOOP I M, LAGENDIJK A, MOSK A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 2010, 4(5): 320-322.
[40] KATZ O, SMALL E, SILLBERBERG Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nature Photonics, 2012, 6(8): 549-553.
[41] POPOFF S M, LEROSEY G, CARMINATI R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10): 100601.
[42] LIUTKUS A, MARTINA D, POPOFF S, et al. Imaging with nature: compressive imaging using a multiply scattering medium[J]. Scientific Reports, 2015(4): 5552.
[43] ANDREOLI D, VOLPE U, POPOFF S, et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix[J]. Scientific Reports, 2015(5): 10347.
[44] DONG J, KRZAKALA F, GIGAN S. Spectral method for multiplexed phase retrieval and application in optical imaging in complex media[C]//IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), 2019: 4936-4967.
[45] YAQOOB Z, PSALTIS D, FELD M S, et al. Optical phase conjugation for turbidity supression in biological samples[J]. Nature Photonics, 2008(2): 110-115.
[46] 王朋. 基于压缩感知的水下偏振光成像技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2015. WANG Peng. Research on Underwater Polarized Light Imaging Technology Based on Compressed Sensing[D]. Xi 'an: Graduate School of Chinese Academy of Sciences (Xi 'an Institute of Optics and Fine Mechanics), 2015.
[47] 张倩. 基于主动式线偏振光照射的偏振成像实验研究[D]. 成都: 电子科技大学, 2020. ZHANG Qian. Experimental Study of Polarization Imaging Based on Active Linearly Polarized Light Irradiation[D]. Chengdu : University of Electronic Science and Technology of China, 2020.
[48] 刘重阳. 基于计算机视觉的透明材料缺陷检测系统研究[D]. 哈尔滨: 哈尔滨理工大学, 2020. LIU Zhongyang. Research on Defect Detection System of Transparent Materials Based on Computer Vision [D]. Harbin: Harbin University of Science and Technology, 2020.
[49] 刘飞, 吴晓琴, 段景博, 等. 浅谈计算成像在光电探测中的应用(特邀)[J]. 光子学报, 2021, 50(10): 1011001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202110008.htm LIU Fei, WU Xiaoqin, DUAN Jingbo, et al. An introduction of application of computational imaging in photoelectric detection(Invited) [J]. Photonic Journal, 2021, 50(10): 1011001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202110008.htm
[50] ROWE M P, PUGH E N, TYO J S, et al. Polarization-difference imaging: a biologically inspired technique for observation through scattering media[J]. Optics Letters, 1995, 20(6): 608-610.
[51] SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 570-587.
[52] HUANG B, LIU T, HU H, et al. Underwater image recovery considering polarization effects of objects[J]. Optics Express, 2016, 24(9): 9826-9838.
[53] HU H, ZHAO L, HUANG B, et al. Enhancing visibility of polarimetric underwater image by transmittance correction[J]. IEEE Photonics Journal, 2017, 9(3): 1-10.
[54] LIU F, WEI Y, HAN P, et al. Polarization-based exploration for clear underwater vision in natural illumination[J]. Optics Express, 2019, 27(3): 3629-3641.
[55] 韩平丽. 水下目标偏振成像探测技术研究[D]. 西安: 西安电子科技大学, 2018. HAN Pingli. Underwater Targets Detection Based on Polarization Imaging[D]. Xi'an: Xidian University, 2018: 67-78.
[56] 韩平丽, 刘飞, 张广, 等. 多尺度水下偏振成像方法[J]. 物理学报, 2018, 67(5): 054202. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201805013.htm HAN Pingli, LIU Fei, ZHANG Guang, et al. Multi-scale analysis method of underwater polarization imaging[J]. Acta Physica Sinica, 2018, 67(5): 054202. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201805013.htm
[57] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.
[58] Klyshko D N. Two-photon light: influence of filtration and a new possible EPR experiment[J]. Physics Letters A, 1988, 128(3-4): 133-137.
[59] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429.
[60] Abouraddy A F, Saleh B E A, Sergienko A V, et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 2001, 87(12): 123602.
[61] Bennink R S, Bentley S J, Boyd R W. "Two-photon" coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601.
[62] LE M, WANG G, ZHENG H, et al. Underwater computational ghost imaging[J]. Optics Express, 2017, 25(19): 22859-22868.
[63] LUO C L, LI Z L, XU J H, et al. Computational ghost imaging and ghost diffraction in turbulent ocean[J]. Laser Physics Letters, 2018, 15(12): 125205.
[64] ZHANG Y, LI W, WU H, et al. High-visibility underwater ghost imaging in low illumination[J]. Optics Communications, 2019, 441: 45-48.
[65] 特伦斯. 谢诺夫斯基. 深度学习[M]. 姜悦兵译. 北京: 中信出版社, 2019. Terrence Shenowski. Deep Learning[M]. Beijin : CITIC Press, 2019.
[66] 瀧雅人. 深度学习入门[M]. 杨秋香译. 北京: 机械工业出版社, 2020. LONG Yaren. Introduction to Deep Learning[M]. Beijing: Mechanical Industry Press, 2020.
[67] ANDO T, HORISAKI R, TANIDA J. Speckle-learning-based object recognition through scattering media[J]. Optics Express, 2015, 23(26): 33902-33910.
[68] LI Y, XUE Y, TIAN L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 2018, 5(10): 1181-1190.
[69] LYU M, WANG H, LI G, et al. Learning-based lensless imaging through optically thick scattering media[J]. Advanced Photonics, 2019, 1(3): 036002.
[70] LAI X, LI Q, WU X, et al. Mutual transfer learning of reconstructing images through a multimode fiber or a scattering medium[J]. IEEE Access, 2021(9): 68387-68395.
[71] 苏俊宏, 尚小燕, 弥谦. 光电技术基础[M]. 北京: 国防工业出版社, 2011. SU Junhong, SHANG Xiaoyan, MI Qian. Fundamentals of Optoelectronic Technology[M]. Beijing: National Defense Industry Press, 2011.
[72] Bigas M, Cabruja E, Forest J, et al. Review of CMOS image sensors[J]. Microelectronics Journal, 2006, 37(5): 433-451.
[73] 胡仓陆, 焦岗成, 郭晖, 等. 宽光谱高蓝绿响应GaAsP阴极微光像增强器[C]//国防光电子论坛第二届新型探测技术及其应用研讨会论文集, 2015: 15. HU Canglu, JIAO Gangcheng, GUO Hui, et al. Wide-spectrum and high blue-green response GaAsP cathode low-light-level image intensifier [C]//Proceedings of the Second National Defense Optoelectronics Forum Symposium on New Detection Technologies and Their Applications, 2015: 15.
[74] 程宏昌, 端木庆铎, 石峰, 等. 双微通道板紫外像增强器工作特性研究[J]. 真空科学与技术学报, 2013, 33(6): 524-527. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201306005.htm CHENG Hongchang, DUAN Muqingduo, SHI Feng, et al. Study on the working characteristics of dual microchannel plate UV image intensifier [J]. Journal of Vacuum Science and Technology, 2013, 33(6): 524-527. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201306005.htm
-
期刊类型引用(5)
1. 苑朝,黄诺飞,蒋阳,赵亚冬,赵振兵. 基于改进旋转不变性二进制描述算法的电力场景图像拼接. 电力科学与工程. 2024(01): 31-38 . 百度学术
2. 张旭辉,王悦,杨文娟,陈鑫,张超,黄梦瑶,刘彦徽,杨骏豪. 基于改进最佳缝合线的矿井图像拼接方法. 工矿自动化. 2024(04): 9-17 . 百度学术
3. 吴润国,刘晓东,费继友,赵兴,姚梦涛. 基于最佳缝合线的电力设备红外图像拼接算法. 电子测量技术. 2024(23): 162-170 . 百度学术
4. 周登科,郭星辰,史凯特,汤鹏,郑开元,马鹏阁. 风电场无人机巡检红外叶片图像拼接算法. 红外技术. 2023(12): 1161-1168 . 本站查看
5. 周登科,郭星辰,史凯特,汤鹏,郑开元,马鹏阁. 风电场无人机巡检红外叶片图像拼接算法. 红外技术. 2023(11): 1161-1168 . 本站查看
其他类型引用(6)