水下光电成像技术研究进展

石峰, 程宏昌, 闫磊, 郭欣, 李世龙, 邱洪金, 丁习文

石峰, 程宏昌, 闫磊, 郭欣, 李世龙, 邱洪金, 丁习文. 水下光电成像技术研究进展[J]. 红外技术, 2023, 45(10): 1066-1083.
引用本文: 石峰, 程宏昌, 闫磊, 郭欣, 李世龙, 邱洪金, 丁习文. 水下光电成像技术研究进展[J]. 红外技术, 2023, 45(10): 1066-1083.
SHI Feng, CHENG Hongchang, YAN Lei, GUO Xin, LI Shilong, QIU Hongjin, DING Xiwen. Advances in Underwater Photoelectric Imaging Technology[J]. Infrared Technology , 2023, 45(10): 1066-1083.
Citation: SHI Feng, CHENG Hongchang, YAN Lei, GUO Xin, LI Shilong, QIU Hongjin, DING Xiwen. Advances in Underwater Photoelectric Imaging Technology[J]. Infrared Technology , 2023, 45(10): 1066-1083.

水下光电成像技术研究进展

详细信息
    作者简介:

    石峰(1968-),男,博士,研究员,主要从事微光夜视技术研究。E-mail:shfyf@126.com

    通讯作者:

    程宏昌(1974-),男,博士,正高工,主要从事微光夜视技术研究。E-mail:chh600@163.com

  • 中图分类号: O439

Advances in Underwater Photoelectric Imaging Technology

  • 摘要: 随着我国海洋、江河和地下水资源勘探、开发和利用的日益深入,以及领海主权防卫的军事需求日趋迫切,在水下获取远距离条件下高质量的目标图像已成为水下环境勘测、目标探测与敌我对抗等许多领域迫切需要解决的问题。目前,水下成像探测技术主要有声探测和光电探测两种途径。本文研究了目前主要水下高分辨力光电探测成像技术现状,分析了不同技术途径的优缺点,对比了各种水下探测/成像系统中采用的光电探测器的情况,结合自身技术背景,提出了应加快发展高灵敏度、低噪声、高增益、快响应、宽动态范围、良好线性度的GaAsP光阴极双微通道板像增强器,从而简化光电系统中因探测器性能不佳带来的灵敏度低、噪声大、增益低、处理时间长等不足,加速各种新技术向产品、实用化设备的转化。本文成果对水下光电成像技术发展将有一定支撑作用。
    Abstract: With the increasing exploration, development, and utilization of China's oceans, rivers, and groundwater resources, as well as the increasingly urgent military need for sovereign defense in territorial waters, obtaining high-quality target images under long-distance underwater conditions has become an urgent problem to be solved in many fields, such as underwater environmental surveys, target detection, and enemy-self confrontation. Currently, the underwater imaging detection technology includes two main methods: acoustic and photoelectric detection. In this study, the current status of the main underwater high-resolution photoelectric detection imaging technology is studied, the advantages and disadvantages of different technical approaches are analyzed, and the photodetectors used in various underwater detection/imaging systems are compared. Combined with its own technical background, it is proposed that the development of a GaAsP photocathode dual microchannel plate image intensifier with high sensitivity, low noise, high gain, fast response, wide dynamic range, and good linearity should be accelerated to simplify the low sensitivity, high noise, low gain, and long processing time, owing to the poor performance of the detector in the photoelectric system, and accelerate the conversion speed of various new technologies into products and practical equipment. The results of this study support the development of underwater photoelectric imaging technology.
  • 随着控制和通信技术的快速发展与应用,传统的工业逐渐实现自动化、智能化[1]。尤其是钢铁冶金方面,智能自动化的实现解决了很多传统操作存在的安全隐患问题,如基于红外测温仪的钢水测温系统[2-3]。红外测温系统的应用逐渐替代了传统的人工测温,不仅提高了钢水的测温精度,还减少了人工测温的安全事故。

    目前,红外测温技术在冶金行业得到广泛应用,尤其是钢水测温方面。其中钢水辐射的红外波长位于0.75~1000 μm,红外测温技术基于钢水辐射的波长能量,得到其表面对面的温度[4]。以上红外测温技术是基于红外辐射理论,即,自然界任何物体(温度在绝对零度以上)时时刻刻都在以电磁波方式向外辐射不同波长的能量。基于这个原理,红外测温技术可以根据辐射体的辐射波长能量,得到其表面对面的温度量[5]。基于钢水的红外热图像,可以得到实时的钢水温度[6]。红外测温原理主要依据于普朗克黑体定律、斯特藩-玻尔兹曼定律和维恩位移定律[7]。根据钢水辐射能量的红外分布图,可以得到对应的辐射体/钢水的温度。即钢水测量温度的准确性取决于由红外热像仪获得的图像的质量[8-9]

    由于实际炼钢环境和测温仪器等不确定性因素的影响,获得的钢水红外热图像存在大量噪声,直接影响最后的钢水测温精度[10]。目前,传统的红外图像去噪处理方法有维纳滤波去噪[11]和稀疏分解去噪[12]等方法。但这些方法都是假设钢水红外图像中的噪声都是独立普通的高斯白噪声,因此对于钢水红外图像中的混合噪声处理效果不太理想。

    为了提高钢水红外图像的去噪效果,本文提出基于自适应维纳滤波的去噪方法。与基于稀疏分解去噪方法相比,本文所提方法在去除噪声后提高了钢水红外图像的细节信息保真度,即去噪后的图像更加真实。此外,在传统维纳滤波去噪方法基础上,本文提出的去噪方法通过建立信号和噪声的相关模型来改进小波去噪。通过自相关的参数指数衰减模型来控制算法的计算复杂性和敏感性。由此产生的自适应维纳滤波适应于小波系数,并有效提高了传统维纳滤波器的去降噪性能。具体验证过程如下:首先,通过钢水测温平台获得不同温度下的钢水红外热图像。然后,利用所提方法对钢水红外热图像进行去噪处理,并与目前存在的维纳滤波去噪和稀疏分解去噪方法进行对比。实验对比结果验证了本文所提去噪方法可以去除红外热图像的噪声,并提高了去噪后钢水红外图像的峰值信噪比。

    与传统图像去噪方法不同,稀疏分解图像去噪方法从图像自身的统计特性出发,将图像分解成稀疏成分和其他成分,如下式:

    $$ x(m,n) = {x_1}(m,n) + {x_2}(m,n) $$ (1)

    式中:$ {x}_{1}(m,n){=}{\displaystyle \sum _{k=0}^{n-1}\langle {R}^{k}x(m,n),{g}_{\gamma k}\rangle }$;$ {x}_{2}(m,n){=}{\displaystyle \sum _{k=\rm{n}}^{\infty }\langle {R}^{k}x(m,n),{g}_{\gamma k}\rangle }$;x(m, n)为原始图像;x1(m, n)为图像的稀疏成分(有用信息);x2(m, n)为图像的其他成分(噪声);gγk为由参数组γ定义的原子,〈Rkx(m, n), gγk〉为图像x(m, n)的残余Rkx(m, n)在对应原子gγk上的分量,然后以图像的稀疏成分为基础重建图像,得到去除噪声后的图像。

    假设图像信号s(m, n)含有噪声信号w(m, n),含有噪声的图像估计信号为:

    $$ x(m,n) = s(m,n) + w(m,n) $$ (2)

    线性估计器为:

    $$\hat s\left( {m,n} \right) = x\left( {m,n} \right)*h\left( {m,n} \right)$$ (3)

    式中:h(m, n)最小均方误差。此外依据正交性原理,最优解h维纳滤波器满足:

    $$ {R_{{\rm{ss}}}}(m,n) = {\left[ {{R_{{\rm{ss}}}}(m,n) + {R_{{\rm{ww}}}}(m,n)} \right]^*}h(m,n) $$ (4)

    滤波器h的傅里叶变换为:

    $$H({w_1},{w_2}) = \frac{{{P_{{\rm{ss}}}}({w_1},{w_2})}}{{{P_{{\rm{ss}}}}({w_1},{w_2}) + {P_{{\rm{ww}}}}({w_1},{w_2})}}$$ (5)

    式中:Rss(m, n)和Rww(m, n)是图像信号s和噪声w的自相关函数;Pss(w1, w2)=σs2是图像信号样本s(m, n)的功率谱;Pww(w1, w2)=σn2是噪声w(m, n)的功率谱,其中σs2σn2分别表示s(m, n)和w(m, n)的方差。

    因此,我们可以得到维纳滤波器为:

    $$h(m,n) = \frac{{\sigma _{\rm{s}}^{\rm{2}}}}{{\sigma _{\rm{s}}^{\rm{2}} + \sigma _{\rm{n}}^{\rm{2}}}}\delta (m,n)$$ (6)

    综上,可以发现最小均方平方误差(Minimum mean square error,MMSE)估计的解是简单的,但是其对信号和噪声的不相关假设并不完全准确。同样考虑小波变换的情况下,非正交结构会在变换域中导致有色噪声,从而使MMSE的解无效。

    为了限制计算复杂度并避免滤波器阶数增长带来的灵敏度问题和变换域导致的噪声问题,我们提出了一种自适应维纳滤波器,该滤波器使用指数衰减自相关模型进行设计。

    类似于式(2),FIR(Finite Impulse Response)维纳滤波器的卷积表达式为:

    $$\hat s(m,n) = \sum\limits_{(i,j) \in {W_{m,n}}} {h(i,j)x(m - i,n - j)} $$ (7)
    $$ {W_{m,n}} = \{ (i,j);m - M \leqslant i \leqslant m + M,n - M \leqslant j \leqslant n + M\} $$ (8)

    式中:Wm, n表示中心在(m, n)的(2M+1)(2M+1)的方形窗口函数;M是自适应滤波器的阶数。等式(7)右侧形成一个有限的块-Toeplitz矩阵[13]

    $$({\mathit{\boldsymbol{R}}_s} + {\mathit{\boldsymbol{R}}_w})\Re = \zeta $$ (9)

    式中:RsRw是(2M+1)(2M+1)的Toeplitz矩阵,对应于两组自相关函数;$\mathfrak{R}$和ζ是关于滤波器系数和信号s自相关函数的(2M+1)2×1向量。从方程(5)我们知道滤波器依赖于信号和噪声的相关性。一旦确定了相关系数,滤波器设计问题就简化为求解线性系统。

    实验结果表明,自然图像的小波系数具有一定的聚类特性。换言之,小波系数的大小与其邻域无关。这种依赖性随着距离的增加而迅速衰减。使用简化符号rm, n: =Rss(m, n),我们提出一个指数衰减模型:

    $${r_{m,n}} = {r_{0,0}}{\gamma ^{\left| m \right| + \left| n \right|}},(m,n) \in {W_{0,0}}$$ (10)

    式中:γ是衰变参数,其随小波系数的尺度变化而变化。指数衰减模型代表了真实图像在其邻居上的系数。此外,频带内自相关函数的变化通过变化的局部方差建模:

    $${s_{m,n}}: = {R_{{\rm{ww}}}}(m,n) = \left\{ \begin{gathered} \sigma _n^2,\quad \quad m = 0,n = 0 \\ {\delta _1}\sigma _n^2,\quad {\kern 1pt} \left| m \right| + \left| n \right| = 1 \\ {\delta _2}\sigma _n^2,\quad \left| m \right| = \left| n \right| = 1 \\ 0,\quad \quad \;\,{\rm{else}} \\ \end{gathered} \right.$$ (11)

    式中:δ是表示是特定表示尺度上小波域系数归一化的界。由于δ是随尺度变化,因此噪声的相关模型也是变化的。

    为了估计在相关模型中的参数,我们为每个频带中的所有系数选择一个通用的衰减参数γ,但是信号方差σs2r0, 0是根据上下文从每个单独的系数估计的。综上,估计信号方差$\hat \sigma _s^2(m,n)$表达式为:

    $${\hat m_s}(m,n) = \frac{1}{{{{{\rm{(2}}M + 1)}^2}}}\sum\limits_{{W_{m,n}}} {x(k,l)} $$ (12)
    $$\hat \sigma _x^2(m,n) = \frac{1}{{{{{\rm{(2}}M + 1)}^2}}}\sum\limits_{{W_{m,n}}} {(x(k,l) - } {\hat m_s}(m,n){)^2}$$ (13)
    $$\hat \sigma _s^2(m,n) = \max (0,\hat \sigma _x^2(m,n) - \sigma _n^2)$$ (14)

    基于小波域中的系数聚类,通过式(12)~(13)建立信号和噪声的相关模型来改进小波去噪。通过自相关的参数指数衰减模型来控制算法的计算复杂性和敏感性。由此产生的自适应维纳滤波适应于小波系数,因此可以有效提高维纳滤波器的去降噪性能。

    图 1所示,实验平台采用的设备如下:中频率和对应电源变频柜的输出参数为额定功率1000 kV,额定频率700 Hz,输入电压750 V/50 Hz;红外热像仪型号为FLIR A65,灵敏度小于等于0.08℃。透镜型号为OLA30.4-350。本实验中采用融化较小的钢坯,通过红外热像仪采集融化后的钢水红外热图像,其中对应现场参数修正信息如表 1所示。

    图  1  钢水红外温度检测系统结构图
    Figure  1.  Structural diagram of molten steel temperature detection system
    表  1  用于温度修正的现场参数信息
    Table  1.  Information for temperature correction
    Temperature/℃ 25.0
    Target distance/m 2.2
    Atmospheric transmittance/% 100
    Window transmittance/% 100
    Global emissivity/% 62
    下载: 导出CSV 
    | 显示表格

    为了验证所提方法对钢水图像去噪的效果,本文用均方差(mean squared error,MSE)和峰值信噪比(peak-signal-to-noise ratio,PSNR)作为评价参数[14]。设U1(m, n)表示原始红外图像,U2(m, n)表示去噪后的红外图像,其中mn代表行和列,则对应的均方差和峰值信噪比计算公式如下::

    $$ {\rm{MSE}}={{\displaystyle \sum _{m,n}[{U}_{1}(m,n){-}{U}_{2}(m,n)]}}^{\frac{1}{2}}$$ (15)
    $$ {\rm{PSNR}}=10\mathrm{lg}\left\{\frac{K\times {\rm{MAX}}^{2}}{{{\displaystyle \sum _{m,n}[{U}_{1}(m,n){-}{U}_{2}(m,n)]}}^{2}}\right\}$$ (16)

    由上可知,去噪后图像对应的PSNR数值越高、MSE数值越小暗示去噪方法对钢水红外图像中的噪声处理的效果越好。

    本实验用红外热像仪分别采集温度为1600℃和1696℃下的钢水红外热图像,用本文提出的自适应维纳滤波方法进行去噪处理。对去噪后的图像分别与基于维纳滤波和基于稀疏分解去噪结果进行对比,通过对比各方法的MSE和PSNR评价参数验证本文去噪方法的优越性。

    图 2所示,对采集的1600℃时钢水红外图像进行去噪处理。Fig.2(b)~Fig.2(c)是采用维纳滤波和稀疏分解方法进行去噪处理后的钢水红外图像,Fig.2(d)为本文去噪方法处理后所得钢水红外图像。同样,对在1696℃时钢水红外图像进行去噪处理。基于以上3种去噪方法,所得去噪后的钢水红外图像如图Fig.3(b)~Fig.3(d)所示。

    图  2  1600℃的钢水红外图像去噪对比
    Figure  2.  Denoising comparison of molten steel infrared image at 1600℃
    图  3  1696℃的钢水红外图像去噪对比
    Figure  3.  Denoising comparison of molten steel infrared image at 1696℃

    基于图 2图 3的去噪后钢水红外图像,我们用MSE和PSNR来评价去噪效果,如表 2所示。我们可以发现基于自适应维纳滤波去噪后图像的MSE和PSNR优于基于维纳滤波和稀疏分解去噪方法。

    表  2  不同温度下钢水红外图像去噪效果对比
    Table  2.  Comparison of denoising effect of molten steel infrared image under different temperatures
    Noise processing method MSE PSNR/dB
    1600℃ 1696℃ 1600℃ 1696℃
    Wiener filter
    Sparse decomposition
    FIR wiener filter
    0.1130
    0.0906
    0.0798
    0.1261
    0.1001
    0.0805
    10.235
    18.539
    25.683
    10.095
    19.168
    26.956
    下载: 导出CSV 
    | 显示表格

    基于文献[10]中钢水温度与红外热图像灰度值之间的对应函数关系,我们取热电偶实时测量钢水温度1600℃时的去噪图像分析不同去噪方法对钢水测量精度的影响。表 3的对比数据验证了本文提出的去噪方法可以提高去噪后的钢水红外热图像对应的钢水温度准确性。

    表  3  钢水温度数据对比
    Table  3.  Comparison of the steel temperature data
    Original image Fig.2(a) 1525
    Denoised image using wiener filter Fig.2(b) 1556
    Denoising image using sparse decomposition Fig.2(c) 1576
    Denoising image using adaptive wiener filter Fig.2(d) 1591
    下载: 导出CSV 
    | 显示表格

    本文针对钢水红外图像存的噪声处理问题,提出了基于自适应维纳滤波的去噪处理方法。通过实验验证,所提的去噪方法可以有效地去除噪声。此外,与基于维纳滤波和稀疏分解去噪方法的对比,所提去噪方法可以更好去除钢水红外图像的噪声,提高图像质量保真度。下一步我们将继续优化所提去噪方法的计算复杂度,以便快速地应用于实际钢水红外测温系统中。

  • 图  1   水下距离选通成像系统原理[5]:(a) 摄像机关闭状态;(b) 摄像机开启状态

    Figure  1.   Principle diagram of underwater range gating imaging system[5]: (a) Camera closed state; (b) Camera open state

    图  2   从左到右依次为加拿大研制的LUCIE 1~LUCIE3系列产品[13-14]

    Figure  2.   LUCIE 1−LUCIE3 series products developed by Canada from left to right[13-14]

    图  3   线扫描示意图[21]

    Figure  3.   line scan schematic[21]

    图  4   “魔灯”水雷探测激光雷达(左),ALMDS机载激光探测雷达(右)[14]

    Figure  4.   "Magic Lamp" mine detection lidar(left) and ALMDS airborne lidar(right)[14]

    图  5   结构光成像示意图[25]

    Figure  5.   Schematic diagram of structured light imaging[25]

    图  6   水下自主作业机器人搭载结构光装置[27]

    Figure  6.   Structured light device for underwater autonomous operation robot[27]

    图  7   水下合成孔径成像实验装置[35]

    Figure  7.   Underwater synthetic aperture imaging experimental setup[35]

    图  8   计算成像流程示意图[36]

    Figure  8.   Schematic diagram of imaging process calculation[36]

    图  9   基于反馈的波前整形技术原理[38]

    Figure  9.   Principle of wavefront shaping technology based on feedback[38]

    图  10   非相干光源成像效果[40]

    Figure  10.   Imaging effect of incoherent light source[40]

    图  11   基于光学传输矩阵的散射光成像[41]

    Figure  11.   Scattering light imaging based on optical transmission matrix[41]

    图  12   透复杂散射介质实验结果[44]

    Figure  12.   Experimental results of complex scattering medium[44]

    图  13   基于光学相位共轭的散射光成像技术[45]

    Figure  13.   Scattering light imaging technology based on optical phase conjugation[45]

    图  14   玻璃的缺陷图像[48]

    Figure  14.   Defect image of glass[48]

    图  15   原始强度图像与复原图像的对比[50]

    Figure  15.   Comparison of original intensity image and restored image[50]

    图  16   成像效果对比图[54]:(a) 字母“XiDian UNIVERSITY”的原始图像;(b) 字母“XiDian UNIVERSITY”的被动水下偏振成像方法的结果;(c) 地中海的原始图像;(d) 地中海被动水下偏振成像方法的结果;(e) 图(d)中A区域的放大结果;(f) 图(d)中B区域的放大结果

    Figure  16.   Comparison of imaging effects[54]: (a) The original image of the letters"XiDian UNIVERSITY"; (b) The results by passive underwater polarization imaging method of the letters" XiDian UNIVERSITY"; (c) The original image of the Mediterranean; (d) The results by passive underwater polarization imaging method of the Mediterranean; (e) The enlarged result of area A in Fig (d); (f) The enlarged result of area B in Fig (d)

    图  17   不同目标复原效果(每张图片左半边为原始图像,右半边为复原图像)[56]

    Figure  17.   Recovery effects of different targets(The left half of each image is the original image, the right half is the restored image) [56]

    图  18   传统鬼成像原理[57]

    Figure  18.   Traditional ghost imaging schematics[57]

    图  19   双光子光学成像实验装置示意图[59]

    Figure  19.   Schematic diagram of two-photon optical imaging experimental device[59]

    图  20   计算鬼成像实验装置示意图[62]

    Figure  20.   Schematic diagram of ghost imaging experimental device[62]

    图  21   含多个隐层的深度学习模型[65-66]

    Figure  21.   Deep learning model with multiple hidden layers[65-66]

    图  22   字符重建结果[69]

    Figure  22.   Character reconstruction results[69]

    图  23   传统光电倍增管结构图[71]

    Figure  23.   Structure diagram of traditional photomultiplier tube[71]

    图  24   雪崩光电二极管工作原理[71]

    Figure  24.   Working principle of avalanche photodiode[71]

    图  25   微光像增强器工作原理[71]

    Figure  25.   Working principle of low light level image intensifier tube[71]

    图  26   CCD工作原理模型[71]

    Figure  26.   CCD working principle model diagram[71]

    表  1   各种水下光电成像技术的对比

    Table  1   Comparison of various underwater photoelectric imaging technologies

    Underwater imaging technology Advantages Fault
    Range-gated imaging High spatial resolution, small detector unit size, low cost and high imaging quality The requirements for laser, receiver and synchronous control technology are high
    Laser line scanning The imaging distance is far and the image precision is high The system has complex structure, high cost and large volume
    Structured light imaging technology With high integration, low cost and high resolution, underwater three-dimensional micro-topography can be obtained Fast and convenient measurement cannot be carried out, and the measurement accuracy is not high enough
    Scattering light computational imaging technology It has high imaging resolution, long detection distance, large optical field of view and low volume power consumption The process of establishing the model is not easy, the algorithm calculation process is complex, and the calculation amount is large.
    Polarized light imaging technology More information can be detected, and the detection ability in turbid water is strong. Color images can be obtained under special conditions. The stability of the system is general and easily affected by environmental factors.
    Underwater ghost imaging technology High sensitivity, anti-interference, wide working wavelength and long imaging distance. The structure complexity is very high, and the performance stability is not good enough.
    Underwater imaging based on deep learning Excellent imaging quality, strong adaptability and simple structure The construction, training and optimization of neural network are complex.
    下载: 导出CSV

    表  2   各种水下光电成像/探测系统的探测器的对比分析

    Table  2   comparative analysis of detectors for various underwater photoelectric imaging/detection systems

    Detector name Sensitivity of underwater blue-green light Dark current Response time Gain Linearity
    Photomultiplier tube High Low Fast High Good
    Avalanche photo diode Common High Common High Good
    Single photon detector High Common Common High Good
    Low-light-level image intensifier High Low Fast High Good
    CCD/CMOS Common Common Common Common Good
    下载: 导出CSV
  • [1] 曾晓光, 金伟晨, 赵羿羽, 等. 海洋开发装备技术发展现状与未来趋势研判[J]. 舰船科学技术, 2019, 41(17): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201917002.htm

    ZENG Xiaoguang, JIN Weichen, ZHAO Yiyu, et al. Current situation and development of marine development equipment technology[J]. Ship Science and Technology, 2019, 41(17): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201917002.htm

    [2] 吕文磊, 张旭, 刘可. 一种距离选通水下激光成像系统设计与实验研究[J]. 兵器装备工程学报, 2019, 40(8): 198-202. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201908039.htm

    LV Wenlei, ZHANG Xu, LIU Ke. Design and experimental study on a range-gated underwater laser imaging system[J]. Arsenal of Ordnance Equipment Engineering, 2019, 40(8) : 198-202. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201908039.htm

    [3] 姜朝宇, 罗涛, 王亚波, 等. 水下线状目标距离选通成像探测研究[J]. 舰船科学技术, 2018, 40(19): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201819026.htm

    JIANG Chaoyu, LUO Tao, WANG Yabo, et al. Experimental study on underwater linear objects detection using underwater range gated imaging method[J]. Ship Science and Technology, 2018, 40(19): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201819026.htm

    [4] 王书宇, 艾磊, 陶声祥, 等. 便携式远距离激光选通成像系统研究[J]. 兵器装备工程学报, 2018, 39(9): 166-170. DOI: 10.11809/bqzbgcxb2018.09.035

    WANG Shuyu, AI Lei, TAO Shengxiang, et al. Research on portable long range laser range-gated imaging system[J]. Journal of Ordnance Equipment Engineering, 2018, 39(9) : 166-170. DOI: 10.11809/bqzbgcxb2018.09.035

    [5] 曹峰梅, 金伟其, 黄有为, 等. 水下光电成像技术与装备研究进展(上)——水下激光距离选通技术[J]. 红外技术, 2011, 33(2): 63-69. DOI: 10.3969/j.issn.1001-8891.2011.02.001

    CAO Fengmei, JIN Weiqi, HUANG Youwei, et al. Review of underwater opto-electrical imaging technology and equipment(Ⅰ)——underwater laser range-gated imaging technology[J]. Infrared Technology, 2011, 33(2): 63-69. DOI: 10.3969/j.issn.1001-8891.2011.02.001

    [6] 王红萍, 熊俊. 水下激光成像测量技术应用研究[J]. 舰船电子工程, 2019, 39(7): 10-12, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC201907004.htm

    WANG Hongping, XIONG Jun. Study on application of the underwater laser imaging technique[J]. Ship Electronic Engineering, 2019, 39(7): 10-12, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC201907004.htm

    [7] 全向前, 陈祥子, 全永前, 等. 深海光学照明与成像系统分析及进展[J]. 中国光学, 2018, 11(2): 153-165. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201802001.htm

    QUAN Qian, CHEN Xiangzi, QUAN Yongqian, et al. Analysis and research progress of deep-sea optical illumination and imaging system [J]. China Optics, 2018, 11(2): 153-165. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201802001.htm

    [8] 张清博, 张晓晖, 韩宏伟. 基于改进生成对抗网络的水下激光图像后向散射光修复方法[J]. 激光与光电子学进展, 2019, 56(4): 114-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201904011.htm

    ZHANG Qingbo, ZHANG Xiaohui, HAN Hongwei. Backscattered light repairing method for underwater laser image based on improved generative adversarial network[J]. Progress of Laser and Optoelectronics, 2019, 56(4): 114-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201904011.htm

    [9] 赵阳, 盖志刚, 赵杰, 等. 距离选通水下激光成像技术研究[J]. 物流工程与管理, 2014, 36(7): 269-270. https://www.cnki.com.cn/Article/CJFDTOTAL-SPCY201407094.htm

    ZHAO Yang, GAI Zhigang, ZHAO Jie, et al. Research on range-gated underwater laser imaging technology[J]. Logistics Engineering and Management, 2014, 36(7): 269-270. https://www.cnki.com.cn/Article/CJFDTOTAL-SPCY201407094.htm

    [10] 孙健, 周亚民. 距离选通激光水下成像系统研究[J]. 舰船电子工程, 2009, 29(2): 24-26, 46. DOI: 10.3969/j.issn.1627-9730.2009.02.007

    SUN Jian, ZHOU Yamin. Research on the underwater laser range-gated imaging system[J]. Ship Electronic Engineering, 2009, 29(2): 24-26, 46. DOI: 10.3969/j.issn.1627-9730.2009.02.007

    [11] 赵美晶. 水下偏振鬼成像方法研究[D]. 大连: 大连海事大学, 2019.

    ZHAO Meijing. Research on Underwater Polarization Ghost Imaging Method [D]. Dalian : Dalian Maritime University, 2019.

    [12]

    Duntley S Q. Light in the sea[J]. J. Opt. Soc. Am., 1963, 53(2): 214-233. DOI: 10.1364/JOSA.53.000214

    [13] 梁磊. 复杂水下环境的目标偏振成像探测技术[D]. 桂林: 桂林电子科技大学, 2020.

    LIANG Lei. Target Polarization Imaging Detection Technology for Complex Underwater Environment[D]. Guilin: Guilin University of Electronic Science and Technology, 2020.

    [14] 谭亚运. 水下脉冲激光近程周向扫描探测技术研究[D]. 南京: 南京理工大学, 2017.

    TAN Yayun. Research on Short-range Circumferential Scanning Detection Technology of Underwater Pulsed Laser[D]. Nanjing: Nanjing University of Science and Technology, 2017.

    [15] 胡玲, 王霞, 延波, 等. 水下距离选通成像系统调制传递函数模型分析[J]. 红外与激光工程, 2015, 44(11): 3262-3269. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201511017.htm

    HU Ling, WANG Xia, YAN Bo, et al. Analysis of underwater range-gated imaging system MTF[J]. Infrared and Laser Engineering, 2015, 44(11) : 3262-3269. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201511017.htm

    [16] 付学志, 王庆胜, 邓代竹, 等. 距离选通水下激光成像作用距离简化核算方法[J]. 激光与红外, 2021, 51(3): 306-310. DOI: 10.3969/j.issn.1001-5078.2021.03.008

    FU Xezhi, WANG Qingsheng, DENG Daizhu, et al. A simplified accounting method for the range of distance separation laser imaging under water[J]. Laser and infrared, 2021, 51(3): 306-310. DOI: 10.3969/j.issn.1001-5078.2021.03.008

    [17] 王磊, 徐智勇, 张启衡, 等. 蓝绿激光水下成像系统的探测灵敏度分析[J]. 红外与激光工程, 2012, 41(1): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201201015.htm

    WANG Lei, XU Zhiyong, ZHANG Qiheng, et al. Detection sensitivity analysis of underwater blue-green laser imaging system[J]. Infrared and Laser Engineering, 2012, 41(1): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201201015.htm

    [18] 许廷发, 苏畅, 罗璇, 等. 水下距离选通降质图像的增强[J]. 北京理工大学学报, 2017, 37(8): 853-857, 862. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201708015.htm

    XU Tingfa, SU Chang, LUO Xuan, et al. Enhancement of the underwater range-gated degraded image[J]. Journal of Beijing University of Technology, 2017, 37(8) : 853-857, 862. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201708015.htm

    [19] 王新伟, 孙亮, 雷平顺, 等. 水下超视距三角形距离能量相关三维成像(特邀)[J]. 红外与激光工程, 2018, 47(9): 903001-0903001(8). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201809002.htm

    WANG Xinwei, SUN Liang, LEI Pingshun, et al. Underwater over-the-horizon triangle distance energy-related three-dimensional imaging (invited)[J]. Infrared and Laser Engineering, 2018, 47(9): 903001-0903001(8). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201809002.htm

    [20] 王新伟, 孙亮, 王敏敏, 等. 水下二维及三维距离选通成像去噪技术研究[J]. 红外与激光工程, 2020, 49(2): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002004.htm

    WANG Xinwei, SUN Liang, WANG Minmin, et al. Deblurring methods for underwater 2D and 3D range-gated imaging [J]. Infrared and Laser Engineering, 2020, 49(2): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002004.htm

    [21] 孙骁禾. 水下激光同轴同步扫描成像系统[D]. 青岛: 中国海洋大学, 2005.

    SUN Xiaohe. Underwater Laser Coaxial Synchronous Scanning Imaging System[D]. Qingdao: Ocean University of China, 2005.

    [22]

    Caimi F M, Dalgleish F R, Giddings T E, et al. Pulse versus CW laser line scan imaging detection methods: simulation results[C]//Proc. MTS/IEEE Oceans Europe, 2007: 1-4.

    [23] 戴佳佳. 基于结构光的三维成像技术研究[D]. 成都: 电子科技大学, 2022.

    DAI Jiajia. Research on 3D imaging technology based on structured light[D]. Chengdu: University of Electronic Science and Technology of China, 2022.

    [24] 周永昊. 基于线结构光的水下微形貌三维信息获取技术研究[D]. 郑州: 华北水利水电大学, 2021.

    ZHOU Yonghao. Research on 3D Information Acquisition Technology of Underwater Micro-topography Based on Line Structured Light [D]. Zhengzhou: North China University of Water Resources and Hydropower, 2021.

    [25] 苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光, 2014, 41(2): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201508020.htm

    SU Xianyu, ZHANG Qican, CHEN Wenjing. Structured light three-dimensional imaging technology[J]. China Laser, 2014, 41(2): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201508020.htm

    [26]

    González E P, Díaz-Pache F S T, Mosquera L P, et al. Bidimensional measurement of an underwater sediment surface using a 3D-scanner[J]. Optics & Laser Technology, 2007, 39(3): 481-489.

    [27]

    Prats M, Fernandez J J, Sanz P J. An approach for semi-autonomous recovery of unknown objects in underwater environments[C] //13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) of IEEE, 2012: 1452-1457.

    [28] 赫连雪艳. 水下结构光三维测量系统建模与标定[D]. 郑州: 华北水利水电大学, 2020.

    HE Lianxueyan. Modeling and Calibration of Underwater Structured Light Three-dimensional Measurement System[D]. Zhengzhou: North China University of Water Resources and Hydropower, 2020.

    [29] 王玲玲. 基于双目立体视觉的水下三维重建[D]. 杭州: 浙江大学, 2011.

    WANG Lingling. Underwater 3D Reconstruction Based on Binocular Stereo Vision[D]. Hangzhou: Zhejiang University, 2011.

    [30] 乔金鹤. 基于双目立体视觉的水下三维重建技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    QIAO Jinhe. Research on Underwater 3D Reconstruction Technology Based on Binocular Stereo Vision[D]. Harbin: Harbin Engineering University, 2018.

    [31] 李文莉. 面向水下三维重建的光视觉特征提取与匹配方法研究[D]. 沈阳: 沈阳理工大学, 2017.

    LI Wenli. Research on Optical Visual Feature Extraction and Matching Methods for Underwater Three-dimensional Reconstruction[D]. Shenyang : Shenyang University of Technology, 2017.

    [32] 丁万山, 刘艳. 水中物体的光学三维形貌测量的研究[J]. 光学学报, 2007(1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200701012.htm

    DING Wanshan, LIU Yan. Optical measurement of object's surface three-dimensional shape in water[J]. Journal of Optics, 2007(1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200701012.htm

    [33] 王宗义. 线结构光视觉传感器与水下三维探测[D]. 哈尔滨: 哈尔滨工程大学, 2005.

    WANG Zongyi. Line Structured Light Vision Sensor and Underwater Three-dimensional Detection[D]. Harbin: Harbin Engineering University, 2005.

    [34]

    Narasimhan S G, Nayar K, Sun B, et al. Structured light in scattering media[C]//Proc. of IEEE, 2005, 1: 420-427.

    [35]

    Levoy M, CHEN B, Vaish V, et al. Synthetic aperture confocal imaging[J]. ACM Trans Graphics, 2004, 23: 825-834.

    [36] 邵晓鹏, 刘飞, 李伟, 等. 计算成像技术及应用最新进展[J]. 激光与光电子学进展, 2020, 57(2): 11-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202002002.htm

    SHAO Xiaopeng, LIU Fei, LI Wei, et al. Latest progress in computational imaging technology and application[J]. Advances in Laser and Optoelectronics, 2020, 57(2): 11-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202002002.htm

    [37]

    VELLEKOOP I M, AEGERTER C M. Focusing light through living tissue[C]//SPIE, 2010, 7554: 755430.

    [38]

    VELLEKOOP I M. Feedback-based wavefront shaping[J]. Optics Express, 2015, 23(9): 12189-12206.

    [39]

    VELLEKOOP I M, LAGENDIJK A, MOSK A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 2010, 4(5): 320-322.

    [40]

    KATZ O, SMALL E, SILLBERBERG Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nature Photonics, 2012, 6(8): 549-553.

    [41]

    POPOFF S M, LEROSEY G, CARMINATI R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10): 100601.

    [42]

    LIUTKUS A, MARTINA D, POPOFF S, et al. Imaging with nature: compressive imaging using a multiply scattering medium[J]. Scientific Reports, 2015(4): 5552.

    [43]

    ANDREOLI D, VOLPE U, POPOFF S, et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix[J]. Scientific Reports, 2015(5): 10347.

    [44]

    DONG J, KRZAKALA F, GIGAN S. Spectral method for multiplexed phase retrieval and application in optical imaging in complex media[C]//IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), 2019: 4936-4967.

    [45]

    YAQOOB Z, PSALTIS D, FELD M S, et al. Optical phase conjugation for turbidity supression in biological samples[J]. Nature Photonics, 2008(2): 110-115.

    [46] 王朋. 基于压缩感知的水下偏振光成像技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2015.

    WANG Peng. Research on Underwater Polarized Light Imaging Technology Based on Compressed Sensing[D]. Xi 'an: Graduate School of Chinese Academy of Sciences (Xi 'an Institute of Optics and Fine Mechanics), 2015.

    [47] 张倩. 基于主动式线偏振光照射的偏振成像实验研究[D]. 成都: 电子科技大学, 2020.

    ZHANG Qian. Experimental Study of Polarization Imaging Based on Active Linearly Polarized Light Irradiation[D]. Chengdu : University of Electronic Science and Technology of China, 2020.

    [48] 刘重阳. 基于计算机视觉的透明材料缺陷检测系统研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.

    LIU Zhongyang. Research on Defect Detection System of Transparent Materials Based on Computer Vision [D]. Harbin: Harbin University of Science and Technology, 2020.

    [49] 刘飞, 吴晓琴, 段景博, 等. 浅谈计算成像在光电探测中的应用(特邀)[J]. 光子学报, 2021, 50(10): 1011001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202110008.htm

    LIU Fei, WU Xiaoqin, DUAN Jingbo, et al. An introduction of application of computational imaging in photoelectric detection(Invited) [J]. Photonic Journal, 2021, 50(10): 1011001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202110008.htm

    [50]

    ROWE M P, PUGH E N, TYO J S, et al. Polarization-difference imaging: a biologically inspired technique for observation through scattering media[J]. Optics Letters, 1995, 20(6): 608-610.

    [51]

    SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 570-587.

    [52]

    HUANG B, LIU T, HU H, et al. Underwater image recovery considering polarization effects of objects[J]. Optics Express, 2016, 24(9): 9826-9838.

    [53]

    HU H, ZHAO L, HUANG B, et al. Enhancing visibility of polarimetric underwater image by transmittance correction[J]. IEEE Photonics Journal, 2017, 9(3): 1-10.

    [54]

    LIU F, WEI Y, HAN P, et al. Polarization-based exploration for clear underwater vision in natural illumination[J]. Optics Express, 2019, 27(3): 3629-3641.

    [55] 韩平丽. 水下目标偏振成像探测技术研究[D]. 西安: 西安电子科技大学, 2018.

    HAN Pingli. Underwater Targets Detection Based on Polarization Imaging[D]. Xi'an: Xidian University, 2018: 67-78.

    [56] 韩平丽, 刘飞, 张广, 等. 多尺度水下偏振成像方法[J]. 物理学报, 2018, 67(5): 054202. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201805013.htm

    HAN Pingli, LIU Fei, ZHANG Guang, et al. Multi-scale analysis method of underwater polarization imaging[J]. Acta Physica Sinica, 2018, 67(5): 054202. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201805013.htm

    [57]

    Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.

    [58]

    Klyshko D N. Two-photon light: influence of filtration and a new possible EPR experiment[J]. Physics Letters A, 1988, 128(3-4): 133-137.

    [59]

    Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429.

    [60]

    Abouraddy A F, Saleh B E A, Sergienko A V, et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 2001, 87(12): 123602.

    [61]

    Bennink R S, Bentley S J, Boyd R W. "Two-photon" coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601.

    [62]

    LE M, WANG G, ZHENG H, et al. Underwater computational ghost imaging[J]. Optics Express, 2017, 25(19): 22859-22868.

    [63]

    LUO C L, LI Z L, XU J H, et al. Computational ghost imaging and ghost diffraction in turbulent ocean[J]. Laser Physics Letters, 2018, 15(12): 125205.

    [64]

    ZHANG Y, LI W, WU H, et al. High-visibility underwater ghost imaging in low illumination[J]. Optics Communications, 2019, 441: 45-48.

    [65] 特伦斯. 谢诺夫斯基. 深度学习[M]. 姜悦兵译. 北京: 中信出版社, 2019.

    Terrence Shenowski. Deep Learning[M]. Beijin : CITIC Press, 2019.

    [66] 瀧雅人. 深度学习入门[M]. 杨秋香译. 北京: 机械工业出版社, 2020.

    LONG Yaren. Introduction to Deep Learning[M]. Beijing: Mechanical Industry Press, 2020.

    [67]

    ANDO T, HORISAKI R, TANIDA J. Speckle-learning-based object recognition through scattering media[J]. Optics Express, 2015, 23(26): 33902-33910.

    [68]

    LI Y, XUE Y, TIAN L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 2018, 5(10): 1181-1190.

    [69]

    LYU M, WANG H, LI G, et al. Learning-based lensless imaging through optically thick scattering media[J]. Advanced Photonics, 2019, 1(3): 036002.

    [70]

    LAI X, LI Q, WU X, et al. Mutual transfer learning of reconstructing images through a multimode fiber or a scattering medium[J]. IEEE Access, 2021(9): 68387-68395.

    [71] 苏俊宏, 尚小燕, 弥谦. 光电技术基础[M]. 北京: 国防工业出版社, 2011.

    SU Junhong, SHANG Xiaoyan, MI Qian. Fundamentals of Optoelectronic Technology[M]. Beijing: National Defense Industry Press, 2011.

    [72]

    Bigas M, Cabruja E, Forest J, et al. Review of CMOS image sensors[J]. Microelectronics Journal, 2006, 37(5): 433-451.

    [73] 胡仓陆, 焦岗成, 郭晖, 等. 宽光谱高蓝绿响应GaAsP阴极微光像增强器[C]//国防光电子论坛第二届新型探测技术及其应用研讨会论文集, 2015: 15.

    HU Canglu, JIAO Gangcheng, GUO Hui, et al. Wide-spectrum and high blue-green response GaAsP cathode low-light-level image intensifier [C]//Proceedings of the Second National Defense Optoelectronics Forum Symposium on New Detection Technologies and Their Applications, 2015: 15.

    [74] 程宏昌, 端木庆铎, 石峰, 等. 双微通道板紫外像增强器工作特性研究[J]. 真空科学与技术学报, 2013, 33(6): 524-527. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201306005.htm

    CHENG Hongchang, DUAN Muqingduo, SHI Feng, et al. Study on the working characteristics of dual microchannel plate UV image intensifier [J]. Journal of Vacuum Science and Technology, 2013, 33(6): 524-527. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201306005.htm

  • 期刊类型引用(4)

    1. 陈秋艳,张新燕,贺敏,田义春,刘宁,郭瑞,王晓辉,游思源,张修坤. 基于深度学习的管道热图像泄漏识别. 红外技术. 2024(05): 522-531 . 本站查看
    2. 袁敏. 基于机器视觉的智能建造H型钢焊接焊缝轨迹跟踪方法. 西昌学院学报(自然科学版). 2024(03): 46-51+99 . 百度学术
    3. 吴丽华,聂丰英. 基于复小波与最大后验估计的红外图像滤波. 光学技术. 2023(01): 113-119 . 百度学术
    4. 欧卫红,万里勇. 双密度复小波与系数相关性的红外图像去噪. 光学技术. 2023(02): 238-244 . 百度学术

    其他类型引用(6)

图(26)  /  表(2)
计量
  • 文章访问数:  3292
  • HTML全文浏览量:  841
  • PDF下载量:  310
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-07-19
  • 修回日期:  2022-11-13
  • 刊出日期:  2023-10-19

目录

/

返回文章
返回
x 关闭 永久关闭

尊敬的专家、作者、读者:

端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

感谢您对本刊的支持!

《红外技术》编辑部

2024年6月6日