基于弱显著图的实时热红外图像行人检测

Real-Time Pedestrian Detection Based on the Weak Saliency Map in Thermal Infrared Images

  • 摘要: 针对现有热红外图像行人检测方法在精度和速度方面存在的问题,提出一种基于弱显著图的实时行人检测方法。该方法以轻量级LFFD(Light and Fast Face Detector)网络为基础,由两级改进网络即SD-LFFD(Saliency Detection-LFFD)和SF-LFFD(Saliency Fusion-LFFD)组成,首先以热红外图像作为输入经SD-LFFD网络产生初步行人检测结果和行人区域弱显著图,接着将该弱显著图与原热红外图像结合“点亮”潜在行人区域并经SF-LFFD网络产生新的行人检测结果,最后将两级改进网络的行人检测结果融合得到最终结果。在数据集CVC-09和CVC-14上实验结果表明,该方法与现有轻量级神经网络相比行人检测的平均精确率有大幅提升,且在有限硬件资源下可实现实时检测。

     

    Abstract: To address the low precision and speed of existing pedestrian detection methods for thermal infrared images, a real-time pedestrian detection method based on a weak saliency map is herein proposed. The proposed method comprises two improved networks, namely, SD-LFFD and SF-LFFD, which use lightweight LFFD as the basic network. First, the thermal infrared image is input into the SD-LFFD to produce the preliminary pedestrian detection results and a weak saliency map indicating the pedestrian regions. Then, the weak saliency map and the original thermal infrared image are combined to highlight the potential pedestrian regions and generate new results using the SF-LFFD. Finally, the pedestrian detection results obtained by the two improved networks are integrated to obtain the final results. The experimental results on the CVC-09 and CVC-14 datasets indicate that the proposed method significantly improves the average precision (AP) of pedestrian detection compared with that of existing lightweight neural networks, and that it achieves real-time detection with limited hardware resources.

     

/

返回文章
返回