Research Progress of InAsSb Infrared Detectors
-
摘要: InAs1-xSbx属于Ⅲ-Ⅴ族化合物半导体合金材料,随Sb组分含量的不同,室温下可覆盖3~12 μm波长,并且InAsSb材料具有载流子寿命长、吸收系数大、载流子迁移率高等优点,是一种具有广阔应用前景的红外光电材料。探测器可以在150 K甚至近室温下工作,具有较高的灵敏度和探测率,是低功耗、小型化、高灵敏度和快响应中长波红外探测系统的良好选择,InAsSb中长波红外探测器受到广泛的关注和研究。本文首先简要概述了InAsSb材料的基本性质。其次,对国内外InAsSb红外探测器发展状况进行了介绍。最后,对InAsSb红外探测技术的发展进行了总结与展望。Abstract: The cut-off wavelength of the spectral responses of the Ⅲ-Ⅴ semiconductor alloys InAs1-xSbx can be changed from 3 to 12 μm by tuning the relative amount of antimony in the alloy at room temperature. In addition, with longer carrier lifetime, higher optical absorption coefficient and higher carrier mobility can be achieved. InAsSb is a type of prospective MWIR and LWIR detector material that has potential applications. InAsSb detector can work at 150 K even at near room temperature with higher sensitivity and detectivity. Hence, it is one of the best choices for low-power, miniaturized, low-cost, highly sensitive, and fast-response MWIR and LWIR detection systems. InAsSb detectors have been widely studied and developed. In this paper, the fundamental material properties are described. Next, the status of the InAsSb infrared photodetectors domestic and abroad is introduced. Finally, the development of the InAsSb infrared detection technology is summarized and prospected.
-
Keywords:
- infrared photodetector /
- InAsSb /
- high operation temperature
-
0. 引言
随着红外焦平面探测器制备技术的发展及对高分辨红外图像的需求,红外焦平面芯片的像元尺寸从30 μm减小至几微米,中波红外波段的最小像元尺寸可达3 μm,长波红外波段的最小像元尺寸可达5 μm[1-3]。减小探测器像元尺寸能显著提升系统观测距离和降低系统重量的优点驱动着焦平面器件向更小像元中心距方向的发展[4]。
评价红外系统探测距离的一个关键参数是调制传递函数(modulation transfer function,MTF),反映了系统对不同空间频率信息的分辨能力,常用于系统分辨能力的量化评估。红外焦平面芯片的MTF主要由3部分决定:像元光敏面尺寸、像元中心距和载流子扩散长度[5]。像元的有效光敏面尺寸由注入区的面积和载流子扩散长度决定,随着像元尺寸的减小,横向扩散对MTF的衰减作用将会明显,此时进一步减小像元尺寸对提升焦平面芯片的空间分辨率并无意义。在焦平面芯片的制备过程中,需要根据像元的MTF测试结果对注入区面积、吸收区厚度及载流子浓度等关键参数进行设计权衡,使焦平面芯片的空间分辨率和像元的有效光敏面尺寸同时达到最优。
为准确表征红外焦平面芯片的MTF,国内外红外焦平面组件制备企业均开展了相应研究工作,法国HGH公司开发的BIRD红外焦平面测试系统可同时实现焦平面芯片的基本性能、串音、MTF等参数的测试[6];法国Sofradir公司基于刀口法搭建了焦平面芯片的MTF测试系统,用于开展不同像元尺寸、不同注入区面积的焦平面芯片的MTF测试分析[7];以色列SCD公司采用小光点法开展了InSb焦平面芯片的空间分辨率特性研究,完成了对芯片制备优化工艺的验证[8]。国内华南理工大学、电子科技大学、上海技物所等单位均开展了焦平面芯片的MTF测试技术研究,完成了焦平面芯片MTF测试系统搭建及其MTF信息的提取[9]。
本文基于刀口法提出了一种倒装互联结构红外焦平面芯片的MTF测试方法,通过在焦平面芯片表面制备特殊的微结构代替倾斜刀口,采用通用的红外焦平面阵列参数测试系统获取芯片的响应信号,提取微结构处像元响应信号进行差分、拟合、傅里叶变换等处理获得了焦平面芯片的MTF。采用本文提出的方法分别对面阵规模为320×256,像元中心距为30 μm的中波焦平面芯片和规模为640×512,像元中心距为15 μm的中波焦平面芯片进行了MTF测试,测试结果显示该方法能准确、快捷地获取焦平面芯片的MTF,采用该方法能有效地降低芯片的MTF测试难度及对测试系统的要求,便于焦平面芯片生产和研制单位快速地实现倒装互联芯片的MTF测试评价及工艺设计验证。
1. 测试原理
由系统MTF的定义可知,若焦平面系统的输入为一冲击函数δ(x),输出的像函数为线扩展函数LSF(x),对像函数进行傅里叶变换即可得到系统的MTF。刀口测试法采用刀口靶标,刀口靶标的亮度分布可看作阶跃函数E(x),其像函数为阶跃响应函数ESF(x)。红外焦平面系统为线性时不变系统,阶跃函数E(x)的导数为冲击函数δ(x),因此其阶跃响应的导数为冲击函数的响应,即线扩展函数LSF(x):
$$ \operatorname{LSF}(x)=\frac{\operatorname{dESF}(x)}{d x} $$ (1) 对线拓展函数LSF(x)进行傅里叶变换可获得焦平面芯片的MTF:
$$ \operatorname{MTF}(f)=\left|\frac{\operatorname{FFT}\left[\frac{\mathrm{d} R(x)}{\mathrm{d} x}\right](f)}{\operatorname{FFT}[\operatorname{LSF}(x)](f)}\right| $$ (2) 式中:LSF(x)为刀口自身的线扩展函数,可通过对刀口定标测试得到;R(x)为探测器对刀口的响应分布函数,刀口法测试的原理如图 1所示。刀口目标辐射产生的红外辐射经红外光学系统后照射在焦平面芯片上,获得响应ESF(x),对响应函数求差分获得LSF(x),对差分结果进行傅里叶变换获得焦平面芯片的MTF[10-11]。
2. 微结构制备
传统的刀口法MTF测试系统由高温黑体、光学系统、斩波器、刀口及位移台等组成,为保证测量结果的准确性,要求刀口平直没有缺陷,且在扫描成像时刀口直边垂直于扫描方向,操作较复杂。为简化倒装互联结构焦平面芯片的MTF测试方法,本文针对倒装互联的碲镉汞焦平面芯片的MTF测试需求,通过在芯片表面制备刀口状微结构代替倾斜刀口,采用焦平面参数测试系统获取芯片响应信号后进行差分、拟合、傅里叶变换等处理提取芯片的MTF。
用于焦平面芯片MTF测试的微结构制备流程如图 2所示。选择基本性能测试合格的焦平面芯片,在其表面沉积20 nm厚的金属铬和50 nm厚的金,并在金属层上旋涂光刻胶;根据待测焦平面芯片的像元间距、注入区面积等选择合适尺寸的光刻板在芯片上光刻倾斜刀口图案;采用离子束刻蚀去掉芯片表面第一层金属Au;再采用Cr腐蚀液腐蚀残余的金属Cr,去胶清洗后即可获得用于MTF测试的微结构,如图 3所示。
为代替刀口法MTF测试中的倾斜刀口,光刻得到的刀口状图案与焦平面芯片需形成一定夹角,如图 4所示。
若焦平面相邻像元的中心距为d,图案与焦平面y轴夹角为θ,相邻像元被金属覆盖部分的面积之差为:
$$ Δs=d^{2}\tanθ $$ (3) 由于外界的红外辐射无法透过沉积的金属层,倾斜刀口图案实现了刀口的步进扫描,步长为dtanθ,为获得完整的刀口扩展函数ESF(x),刀口的倾斜角θ需要根据像元尺寸、测试精度等要求进行调整。
3. 结果分析及讨论
将制备得到的带有微结构的焦平面芯片封装于测试杜瓦,测试方法采用国标[12]中对器件响应测试的相应规定,分别对20℃和35℃黑体目标,调节积分时间使得器件输出达到半阱状态,获取15℃温差下器件的响应输出。
首先采用本文提出的方法开展中波红外320×256(30 μm)焦平面芯片的MTF测试。刀口倾斜量tanθ=0.0202,等效扫描步长为0.606 μm,获得的带微结构焦平面芯片的响应图如图 5所示。选取明暗相间部分某一行下的所有像元(该行应包含全部被金属覆盖和完全未被金属覆盖的像元)进行MTF提取,获得的线扩展函数如图 6所示,图 7为焦平面芯片的MTF测试结果与宽度为30 μm的方波的MTF对比,其中参考方波的截止频率为33 cyc/mm,被测中波320×256(30 μm)焦平面芯片的截止频率为36 cyc/mm,奈奎斯特频率处的MTF值为0.59,从图 7中可以看出宽度为30 μm方波的MTF与被测芯片的MTF接近,说明该芯片的占空比已处于较优的水平,芯片的占空比接近100%,但被测芯片在奈奎斯特频率处的MTF值小于理想值0.64,说明载流子的横向扩散已经对该焦平面的MTF产生衰减作用。
为进一步验证本文提出的方法对小像元间距的焦平面芯片的MTF测试效果,选取面阵规模为640×512(15 μm像元间距)的中波红外焦平面芯片开展MTF测试(编号分别为M110和M17),根据文中方法在选定的芯片表面制备微结构,得到焦平面芯片的响应如图 8所示,焦平面芯片M17和M110具有相同的像元中心距和注入区面积,但吸收区的p型载流子浓度不同,其中芯片M17吸收区的载流子浓度小于芯片M110吸收区的载流子浓度。
根据刀口法MTF测试的原理,从图 8中选取明暗相间部分某一列下的所有像元(该列应包含全部被金属覆盖和完全未被金属覆盖的像元)求取相邻像元间响应信号的差值,获得线扩展函数LSF(x),如图 9所示,其中刀口倾斜角为θ(tanθ=0.0147),等效扫描步长为0.22 μm。对差分获得的焦平面芯片的LSF函数进行拟合得到线扩展函数后进行傅里叶变换得到如图 10所示的焦平面芯片MTF。与中波320×256(30 μm)芯片相比(图 6),中波640×512(15 μm)焦平面芯片(图 9)的线扩展函数LSF的毛刺明显增多,这是由于该方法属于倾斜刀口法测量焦平面芯片MTF的变形,测试结果受系统噪声、像元响应非均匀性的影响,随着像元间距及等效扫描步长的减小,测试系统噪声、像元响应非均匀性对测试结果的影响将会越发明显。
图 11为获取的两个不同p型载流子浓度的中波640×512(15 μm)焦平面芯片的LSF,芯片M110的LSF函数半峰宽小于芯片M17的LSF函数半峰宽,其中芯片M17的截止频率为71 cyc/mm,芯片M110的截止频率为81 cyc/mm,这与少子在芯片M17吸收区的扩散长度长于在芯片M110吸收区的扩散长度相对应(芯片M17吸收区的载流子浓度低于芯片M110吸收区的载流子浓度)。因此,对于像元中心距较大的平面型焦平面芯片,可通过增大注入区面积或者降低吸收区载流子浓度等方式提升焦平面芯片的占空比;对于小像元焦平面芯片,可采取优化注入区面积、吸收区载流子浓度等方式降低串音带来的不利影响。随着像元中心距的进一步减小,扩散长度对焦平面芯片的MTF的影响将会更加明显,在进行小像元焦平面芯片制备工艺设计时,需要对吸收区载流子浓度、注入区面积、像元有效光敏面进行权衡,以达到通过减小像元中心距、提升焦平面芯片MTF的同时,降低串音等对成像质量影响的目的。
本文提出的基于微结构的红外焦平面芯片的MTF测试技术属于倾斜刀口法测量焦平面芯片MTF的变形,制备的微结构紧贴在芯片背面,避免了刀口衍射对测量结果的影响,同时省略了光学系统调节、刀口扫描等步骤,降低了焦平面芯片的MTF测试难度;通过对15 μm和30 μm像元中心距焦平面芯片的MTF测试,验证了该方法能够满足不同像元尺寸芯片的MTF测试分析。值得注意的是,微结构一经制备就无法更改,图案设计不合理(扫描步长过大或过小)将无法提取得到焦平面芯片的MTF,同时微结构需要根据不同芯片的特点单独设计。
4. 结论
MTF是评价焦平面芯片在不同空间频率下成像能力的重要参数,本文针对焦平面芯片MTF的测试需求提出了一种简单方便的MTF测试方法,通过在芯片表面制备微结构代替倾斜刀口,采用通用的红外焦平面阵列参数测试系统获取芯片响应,提取微结构处像元响应进行差分、拟合、傅里叶变换等处理获取焦平面芯片的MTF。该方法属于倾斜刀口法测试焦平面芯片MTF的变形,便于焦平面芯片生产和研制单位快速地实现倒装互联芯片的MTF测试评价及工艺设计验证。
-
图 5 长波势垒探测器异质结的能带结构示意图:(a) 导带和价带能级;(b) 偏置电压下能带分布,少子(空穴),箭头表示少子空穴输运方向[55]
Figure 5. Schematic band diagrams of the barrier detector heterostructure: (a) conduction and valence band energies; (b) energy band profile under the operating bias, the direction of the minority hole transport being shown with an arrow[55]
表 1 国外InAs1-xSbx红外探测器研究结果
Table 1 Research results of InAs1-xSbx infrared detectors abroad
Research institute x Structure Temp./K λcut-off /μm Jdark/(A/cm2) D*/(cmHz1/2/W) NETD/mK Ref SCD 0.09 nBnn or CpBnn 150 4.2 < 10-6 - < 25 [34] DRS HRL 0.195 nBn 150 4.9 10-5 1.2×1011 44 [35] JPL 0.08 QD-BIRD 175 6.5 3.77×10-4 1.07×1011 - [36] 0.085 nBn 300 4.5 1.6 1×109 - [37] VIGO 0.19 p+Bpin+ or p+Bppn+ 230 5.3 0.13 - [38] 0.7 p+Bppn+ 300 14.2 - - - [39] Stony Brook university 0.4 nBn 77 10 5×10-4 4×1010 - [40] Nanyang Technological University 0.09 p-i-n 300 5 2.62 8.9×108 - [41] -
[1] Wooley J C, Smith B A. Solid solution in Ⅲ-Ⅴ compounds[C]//Proc. of SPIE, 1958, 72: 214-223.
[2] Wooley J C, Warner J. Preparation of InAs-InSb Alloys[J]. Canadian Journal of Physics, 1964, 111: 1142-1145.
[3] Wooley J C, Warner J. Optical energy-cap variation in InAs-InSb alloys[J]. Canadian Journal of Physics, 1964, 42: 1879-1885. DOI: 10.1139/p64-176
[4] Joel M Fastenau, Dmitri Lubyshev, QIU Yueming, et al. Sb-based IR photodetector epi wafers on 100 mm GaSb substrates manufactured by MBE[J]. Infrared Physics & Technology, 2013, 59: 158-162.
[5] Denghy H Y, Hong X K, Fag W Z, et al. Microstructure characterization of InAs0.93Sb0.07 films grown by ramp-cooled liquid phase epitaxy[J]. Materials Characterization, 2007, 58(3): 307-311. DOI: 10.1016/j.matchar.2006.05.009
[6] Tian Z B, Schuler-Sandy T, Godoy S E, et al. High-operating-temperature MWIR detectors using type Ⅱ superlattices[C]//Proc. of SPIE, 2013, 8867: 88670S.
[7] Manijeh Razeghi, Siamak Abdollahi Pour, Edward Huang, et al. High operating temperature MWIR photon detectors based on type Ⅱ InAs/GaSb superlattice[C]//Proc. of SPIE, 2011, 8012: 80122Q.
[8] Smith S N, Phillips C C, Thomas R H, et al. Interband magneto-optics of InAs1-xSbx Semicond[J]. Sci. Technol. , 1992(7): 900-906.
[9] Balenky G, Donetsky D, Kipshidze G, et al. Properties of unrelaxed InAs1-xSbx alloys grown on compositionally graded buffers[J]. Applied Physics Letters, 2011, 99(14): 141116. DOI: 10.1063/1.3650473
[10] Webster P T, Riordan N A, LIU S, et al. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy[J]. J. Appl. Phys. , 2015, 118(24): 245706. DOI: 10.1063/1.4939293
[11] Suchalkin S, Ludwig J, Belenky G, et al. Electronic properties of unstrained unrelaxed narrow gap InAsxSb1−x alloys[J]. J. Phys. D. Appl. Phys. , 2016, 49(10): 105101. DOI: 10.1088/0022-3727/49/10/105101
[12] Osbourn G C. InAsSb strained-layer superlattices for long wavelength detector applications[J]. J. Vac. Sci. Technol, 1984, B2(2): 176-178.
[13] FANG Z M, MA K Y, JAW D H, et al. Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy[J]. Journal of Applied Physics, 1990, 67: 7034. DOI: 10.1063/1.345050
[14] Svensson S P, Sarney W L, Hier H. Band gap of InAs1−xSbx with native lattice constant[J]. Physical Review, 2012, B86: 245205.
[15] Wieder H H, Clawson A R. Photo-electronic properties of InAs0.07Sb0.93 films[J]. Thin Solid Films, 1973, 15: 217-221. DOI: 10.1016/0040-6090(73)90045-X
[16] Thompson A G, Woolley J C. Energy-gap variation in mixed Ⅲ-Ⅴ alloys[J]. Canadian Journal of Physics, 1967, 45(2): 255-261. DOI: 10.1139/p67-026
[17] Ravindra N M, Srivastava V K. Temperature dependence of the energy gap in semiconductors[J]. J. Phys. Chem. Solids, 1979, 40: 791-793. DOI: 10.1016/0022-3697(79)90162-8
[18] LIN Youxi, WANG Ding, Donetsky Dmitry, et al. Conduction-and valence-band energies in bulk InAs1−x Sbx and type Ⅱ InAs1−xSbx/InAs strained-layer superlattices[J]. Journal of Electronic Materials, 2013, 42(5): 1-9.
[19] Alexander Soibel, Cory J Hill, Sam A Keo, et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors[J]. Applied Physics Letters, 2014, 105(2): 023512. DOI: 10.1063/1.4890465
[20] Craig A P, Thompson M D, Tian Z-B, et al. InAsSb-based nBn photodetectors: lattice mismatched growth on GaAs and low frequency noise performance[J]. Semiconnd. Sci. Technol., 2015, 30: 105011. DOI: 10.1088/0268-1242/30/10/105011
[21] Jen H R, Ma K Y, Stringefellow G B. Long range order in InAsSb[J]. Applied Physics Letters, 1989, 54: 1154-1159. DOI: 10.1063/1.100746
[22] Stradling R A. InSb-based materials for detectors[J]. Semicond Sci Technol., 1991, 6: C52-55. DOI: 10.1088/0268-1242/6/12C/011
[23] Kurtz S R, Dawson L D, Biefekl R M, et al. Ordering-induced band-gap reduction in InAs1−xSbx (x≈0.4) alloys and superlattices[J]. Physical Review B, 1992, 46(3): 1909-1912. DOI: 10.1103/PhysRevB.46.1909
[24] Su-Huai, Alex Zunger. InAsSb/InAs: A type-Ⅰ or a type-Ⅱ band alignment[J]. Physical Review B, 1995, 52: 12039-12044. DOI: 10.1103/PhysRevB.52.12039
[25] Elizabeth H Steenbergen, Oray O Cellek, Dmitri Lubyshev, et al. Study of the valence band offsets between InAs and InAs1−xSbx alloys[C]//SPIE, 2012, 8268: 82680K.
[26] Webster P T, LIU S, Steenbergen E H, et al. Absorption properties of type-Ⅱ InAs/InAsSb superlattices measured by spectroscopic ellipsometry[J]. Applied Physics Letters, 2015, 106(6): 061907. DOI: 10.1063/1.4908255
[27] Rogalski A, Jozwikowski K. Intrinsic carrier concentration and effective mass in InAs1−xSbx[J]. Infrared Physics, 1989, 29(1): 35-42. DOI: 10.1016/0020-0891(89)90006-7
[28] Safa Kasap, Peter Capper. Handbook of Electronic and Photonic Materials[M]. 2nd: Springer International Publishing: New York, USA, 2017.
[29] Egan R J, Chin V W L, Tansley T L. Dislocation scattering effects on electron mobility in InAsSb[J]. J. Appl. Phys, 1994, 75(5): 2473-2476. DOI: 10.1063/1.356244
[30] Dixit V K, Bansal B, Venkataraman V, et al. Structural, optical and electrical properties of bulk single crystals of InAs1−xSbx grown by rotatory Bridgman method[J]. Applied Physics Letters, 2002, 81(9): 1630-1632. DOI: 10.1063/1.1504163
[31] YEN M Y. Molecular-beam epitaxial growth and electrical properties of lattice mismatched InAs1−xSbx on (100) GaAs[J]. J. Appl Phys. , 1988, 64(6): 3306-3309. DOI: 10.1063/1.342492
[32] Chyi J H, Kalem S, Kumar N S, et al. Growth of InSb and InAs1−xSbx on GaAs by molecular beam epitaxy[J]. Applied Physics Letters, 1988, 53(12): 1092-1094. DOI: 10.1063/1.100031
[33] Tsukamoto S, Bhattacharya P, Chen Y C, et al. Transport properties of InAsxSb1−x (0≤x≤0.55) on InP grown by molecular-beam epitaxy[J]. J. Appl. Phys., 1990, 67(11): 6819-6822. DOI: 10.1063/1.345071
[34] Yoram Karni, Eran Avnon, Michael Ben Ezra, et al. Large format 15 μm pitch XBn detector[C]//Proc. of SPIE, 9070: 90701F.
[35] D'Souza A I, Robinson E, Ionescu A C, et al. InAsSb detector & FPA data and analysis[C]//Proc. of SPIE, 2014, 9100: 91000B.
[36] David Z Ting, Sam A Keo, John K Liu, et al. Barrier infrared detector research at the jet propulsion laboratory[C]//Proc. of SPIE, 2012, 8511: 851104.
[37] Alexander Soibel, Cory J Hill, Sam A Keo, et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors[J]. Infrared Physics & Technology, 2015, 70: 121-124.
[38] Emilia Gomółka, Małgorzata Kopytko, Olga Markowska, et al. Electrical and optical performance of midwave infrared InAsSb heterostructure detectors[J]. Opt. Eng., 2018, 57(2): 027107.
[39] Kubiszyn Ł, Michalczewskib K, Benyahiab D, et al. High operating temperature LWIR and VLWIR InAs1−xSbx optically immersed photodetectors grown on GaAs substrates[J]. Infrared Physics & Technology, 2018, 97: 116-122.
[40] DING Wang, Dmitry Donetsky, Gela Kipshidze, et al. Metamorphic InAsSb-based barrier photodetectors for the long wave infrared region[J]. Applied Physics Letters, 2013, 103: 0511201-05112013.
[41] TONG Jinchao, Landobasa Y M Tobing, LI Qian, et al. InAs0.9Sb0.1-based hetero-p-i-n structure grown on GaSb with high mid-infrared photodetection performance at room temperature[J]. J. Mater. Sci., 2018, 53: 13010-13017. DOI: 10.1007/s10853-018-2573-0
[42] Bubulac L O, Andrews A M, Gertner E R, et al. Backside-illuminated InAsSb/GaSb broadband detectors[J]. Applied Physics Letters, 1980, 36(9): 734-736. DOI: 10.1063/1.91649
[43] Kim J D, Mohseni H, Wojkowski J S, et al. Growth of InAsSb alloys on GaAs and Si substrate for uncooled infrared photodetector applications [C]//Proc. of SPIE, 1999, 3629: 338-344.
[44] Chakrabarti P, Krier A, HUANG X L, et al. Fabrication and characterization of an InAs0.96Sb0.04 photodetector for MIR application[J]. IEEE Electron Device Letters, 2004, 25(5): 283-285. DOI: 10.1109/LED.2004.826979
[45] TONG Jinchao, Landobasa Y M Tobing, NI Peinan, et al. High quality InAsSb-based heterostructure n-i-p mid-wavelength infrared photodiode[J]. Applied Surface Science, 2018, 427: 605-608. DOI: 10.1016/j.apsusc.2017.08.177
[46] Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature[J]. Applied Physics Letters, 2006, 89(15): 151109. DOI: 10.1063/1.2360235
[47] Klipstein P, Klin O, Seve G, et al. MWIR InAsSb XBn detectors for high operating temperatures[C]//Proc. of SPIE on Infrared Technology and Applications XXXVI, 2008, 7660: 76602Y.
[48] Klipstein P, Klin O, Seve G, et al. XBn barrier detectors for high operating temperatures[C]//Proc. of SPIE on Quantum Sensing and Nanophotonics Devices Ⅶ, 2010, 7608: 7608-65.
[49] Alexander Soibel, Cory J Hill, Sam A Keo, et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors[J]. Infrared Physics & Technology, 2015, 70: 121-124.
[50] Ionescu A C, Salcido M, T J de Lyon, et al. InAsSb detectors for visible to MWIR high operating temperature applications[C]//Proc. of SPIE, 2011, 8012: 80122S.
[51] Martyniuk P, Antoni R. Theoretical investigation of properties of InAsSb mid-wave infrared detectors[C]//Proc. of SPIE, 2018, 10830: 108300U.
[52] Martyniuk P, Antoni R. Modeling of InAsSb/AlAsSb nBn HOT detector's performance limit[C]//Proc. of SPIE, 2013, 8704: 87041X.
[53] LIN Youxi, Donetsky Dmitry, WANG Ding, et al. Development of bulk InAsSb alloy and barrier heterostryctures for long-wave infrared detectors[J]. Journal of Electronic Materials, 2015, 44(10): 3360-3366. DOI: 10.1007/s11664-015-3892-4
[54] Gregory Belenky, WANG Ding, LIN Youxi, et al. Metamorphic InAsSb/AlInAsSb heterostructures for optoelectronic applications[J]. Applied Physics Letters, 2013, 102: 1111081.
[55] WANG Ding, Donestsky Dmitry, Kipshidze Gela, et al. Metamorphic InAsSb-based barrier photodetectors for the long wave infrared region[J]. Applied Physics Letters, 2013, 103: 0511201-0511203.
[56] Kubiszyn Ł, Michalczewski K, Benyahia D, et al. High operation temperature LWIR and VLWIR InAs1-xSbx optically immersed photodetectors grown on GaAs substrate[J]. Infrared Physics & Technology, 2018, 12(25): 1-9.
[57] Vinita Dahiya, Julia I Deitz, David A. Hollingshead, et al. Investigation of digital alloyed AlInSb metamorphic buffers[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materiala, Processing, Measurement, and Phenomena, 2018, 36: 02D1111-02D1117.
[58] Klipstein P C, Gross Y, Aronov D, et al. Low SWaP MWIR detector based on XBn focal plane array[C]//Proc. of SPIE, 2013, 8704: 87041S.
[59] 高玉竹, 龚秀英. 室温InAsSb长波红外探测器的研制[J]. 光电子激光, 2010, 21(12): 1751-1754. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201012003.htm GAO Yuzu, GONG Xiuying, WU Guanghui, et al. Fabrication of room temperature InAsSb infrared detector with long-wavelength[J]. Journal of Optoelectronics Laser, 2010, 21(12): 1751-1754. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201012003.htm
[60] SUN Changhong, HU Shuhong, WANG Qiwei, et al. Single crystalline InAsSb grown on (100) InSb substrate by liquid phase epitaxy[C]//Proc. of SPIE, 2012, 8419: 1-5.
[61] 黄亮. 基于In、As、Ga、Sb的新型红外探测材料及器件的光谱研究[D]. 上海: 中国科学院上海技术物理研究所, 2014. HUANG Liang. Spectroscopic Research of New Infrared Detection Materials and Devices Based on In, As, Ga, Sb[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2014.
[62] 宁振动. 锑化物红外探测材料的MOCVD生长及光电性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. NING Zhendong. Research on MOCVD Growth and Opto-electric Characterization of Antimonide Infrared Detection Materials[D]. Harbin: Harbin Institute of Technology, 2016.
[63] WANG Tingting, XIONG Min, ZHAO Yingchun, et al. Planar mid-infrared InAsSb photodetector grown on GaAs substrate by MOCVD[J]. Applied Physics Express, 2019, 12: 122009. DOI: 10.7567/1882-0786/ab507c
[64] REN Yang, HAO Ruiting, LIU Sijia, et al. High Lattice match growth of InAsSb based materials by molecular beam epitaxy[J]. Chin. Phys. Lett., 2016, 33(12): 1281021-1281023.
[65] ZHANG Xuan, JIA Qingxuan, SUN Ju, et al. High-performance mid-wavelength infrared detectors based on InAsSb nBn design[J]. Chin. Phys. B, 2020, 29(6): 0685011-0685014.
[66] 谢浩. InAsSb中波室温红外探测器材料的LPE生长及其器件[D]. 上海: 中国科学院上海技术物理研究所, 2020. XIE Hao. LPE Growth and Device Fabrication of InAsSb Medium Wave Infrared Detector at Room Temperature[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2020.
[67] DENG Gongrong, YANG Wenyun, ZHAO Peng, et al. High operating temperature InAsSb-based mid-infrared focal plane array with a band-aligned compound barrier[J]. Appl. Phys. Lett, 2020, 113: 031104.
[68] DENG Gongrong, YANG Wenyun, GONG Xiaoxia, et al. High-performance uncooled InAsSb-based pCBn mid-infrared photo-detectors[J]. Infrared Physics & Technology, 2020, 105: 1032601-1032605. http://www.cnki.com.cn/Article/CJFDTotal-ZGWL202006080.htm