红外热成像折转光学系统的光轴静态敏感度分析

Optical Axis Static Sensitivity Analysis for Infrared Thermal Imaging Folding Optical System

  • 摘要: 红外热成像折转光学系统在复杂环境条件下,光轴容易因为光学元件的偏心或倾斜而发生漂移,影响系统对目标的指示精度。在红外热成像系统设计之初对光学系统开展光轴静态敏感度分析,能够识别出光学系统的敏感点,为满足光轴稳定性的结构优化设计提供约束条件。通过基于旋转矩阵的坐标变换,建立了光学元件旋转过程量和倾斜状态量的转换关系,从而实现了光学元件在任意方向倾斜的空间姿态模拟,确保了光轴敏感度公差分析中的蒙特卡罗采样与结构设计的约束条件相对应,并在此基础上搭建了对红外折转光学系统光轴静态敏感度分析的流程,编制了程序。用所编程序对某典型红外热成像折转光学系统进行实例分析,根据光轴稳定性的指标要求,依次对光学系统中各光学件的偏心量和倾斜量进行了光轴的灵敏度和反灵敏度分析,得出了初始公差限,再针对初始公差限数据进行了任意方向采样的蒙特卡罗分析,最终得出了各光学元件能够满足光轴稳定性指标的偏心和倾斜公差限数据,通过建立多重坐标系的方法验证了所得数据的准确性,为指导光机热优化设计奠定了基础。

     

    Abstract: The optical axis of an infrared thermal imaging folding optical system is prone to shift owing to decentering of the tilt of optical components under complex environmental conditions, which affects the indication accuracy of the system for the target. Static sensitivity analysis of the optical axis for the optical system at the beginning of the design of the infrared thermal imaging system is useful for identifying the sensitive points of the optical system and provides constraints for the structural optimization design to meet the stability of the optical axis. The conversion relationship between the rotation process and spatial state quantities of the optical components was established by coordinate transformation based on the rotation matrix to simulate the spatial attitude of the optical component tilted in any direction and ensure that the Monte Carlo sampling in the optical axis sensitivity analysis corresponds to the constraint conditions of the structural design. On this basis, the flow of the static sensitivity analysis of the optical axis of the infrared folding optical system was established, and a program was compiled. A typical infrared thermal imaging folding optical system was analyzed using this program. According to the index requirements of the optical axis stability, the optical axis sensitivity and inverse sensitivity of the decenter and tilt of each optical component in the optical system were analyzed, and the initial tolerance limit was obtained. Then, Monte Carlo analysis sampling could be performed in any direction according to the initial tolerance limit data; thus, the decenter and tilt tolerance limit data that meet the optical axis stability index could be obtained, and the accuracy of the obtained data was verified by establishing a multi-coordinate system. Static sensitivity analysis provides a foundation for guiding the design of optical–mechanical thermal optimization.

     

/

返回文章
返回