基于混合灵敏度的在轨组装望远镜CMOS组件热设计

Thermal Design of Complementary Metal-Oxide Semiconductor Components for In-Orbit Assembly of Telescopes Based on Hybrid Sensitivity

  • 摘要: 针对某在轨组装望远镜CMOS组件与其他模块间存在复杂热耦合,且外热流变化剧烈,导致CMOS组件热设计难以确定最优参数的问题,本文提出了一种基于平均影响值(mean impact value,MIV)算法并结合传统回归分析Pearson和Spearman算法相互对比验证的混合灵敏度分析方法,开展CMOS组件热设计参数灵敏度分析,得到关键参数并完成热设计优化。相较传统遍历选取热设计参数方法,热设计参数数量由原始10个减少为2个重要及5个次要参数,参数选取更具有目的性,提升了热设计效率。仿真分析结果表明,CMOS轨道周期内温度波动1.6℃~25.4℃,热设计满足工作温度,验证了基于混合灵敏度分析方法的热设计可行性。

     

    Abstract: The complex thermal coupling between complementary metal-oxide semiconductor (CMOS) components and other modules of an in-orbit assembled telescope and significant changes in external heat flow make it difficult to determine the optimal parameters for the thermal design of CMOS components. In this study, a hybrid sensitivity analysis method was developed based on the mean impact value(MIV) algorithm and the traditional regression analysis (Pearson and Spearman) algorithms for comparison and validation. In addition, a sensitivity analysis of the thermal design parameters of the CMOS component was conducted, the optimal parameters were obtained, and thermal design optimization was achieved. Compared with the traditional traversal method for selecting thermal design parameters, the number of thermal design parameters decreases from the original 10 to two important and five minor parameters. This makes the selection of parameters purposeful and improves the thermal design efficiency. The simulation results show that the temperature fluctuation of 1.6℃–25.4 ℃ during the CMOS track cycle and the thermal design satisfy the operating temperature requirements, verifying the feasibility of the thermal design based on the hybrid sensitivity analysis method.

     

/

返回文章
返回