Study on Dual-Fluid Spray Cleaning Technique for Single-wafer Particle Removal
-
摘要: 研究了气液混合流清洗方法对单片晶圆表面颗粒的去除效果,引入无量纲参数移径比(H/D)讨论其对单片晶圆表面颗粒去除效率的影响。此外,还讨论了冲洗时间、冲洗压力对颗粒去除效率的影响。结果表明:晶圆表面颗粒去除效率随着冲洗时间、冲洗压力的增大而提高。移径比为1时晶圆表面颗粒去除效率最高;当移径比小于1时,晶圆表面颗粒去除效率随移径比增大而提高;当移径比大于1时,晶圆表面开始出现未被冲洗的区域,颗粒去除效率随移径比增大而迅速降低。采用气液混合流清洗技术,可以实现颗粒直径为0.2~0.3 μm范围的颗粒去除效率达99%以上,颗粒直径为0.1~0.5 μm范围的颗粒去除效率达96%以上。Abstract: The particle removal efficiency (PRE) of single-wafer substrates using dual-fluid spray-cleaning technology was investigated. The ratio displacement-diameter(H/D), which is dimensionless, is introduced to discuss the effect of PRE on a single-wafer surface. In addition, the effects of spray time and nozzle injection pressure on PRE are discussed. The results show that increasing the spray time and nozzle injection pressure can increase PRE. The highest PRE occurred when the displacement-diameter ratio was close to 1. When the ratio was less than 1, the PRE increased with an increase in the displacement–diameter ratio. When the ratio was greater than 1, the partial area of the wafer surface was not washed, and the PRE decreased rapidly with an increase in the ratio. The dual-fluid spray-cleaning method can achieve more than 99% PRE for particle sizes between 0.2 μm and 0.3 μm and more than 96% PRE for particle sizes between 0.1 μm and 0.5 μm.
-
-
表 1 样品实验条件
Table 1 Experimental condition of samples
Sample Spray time(nT) Displacement diameter ratio(H/D) Injection pressure/(Psi) a 1T 0.2 40 b 2T 0.2 40 c 3T 0.2 40 d 4T 0.2 40 e 4T 0.5 40 f 4T 1 40 g 4T 2 40 h 4T 0.2 20 i 4T 0.2 30 j 4T 0.2 50 -
[1] 胡雅倩. 硅片清洗技术及发展[J]. 天津科技, 2019, 46(6): 66-67. DOI: 10.3969/j.issn.1006-8945.2019.06.019 HU Yaqian. Silicon wafer cleaning technology and its development[J]. Tianjin Science & Technology, 2019, 46(6): 66-67. DOI: 10.3969/j.issn.1006-8945.2019.06.019
[2] 李仁. 兆声清洗技术分析及应用[J]. 电子工业专用设备, 2004(1): 63-66. DOI: 10.3969/j.issn.1004-4507.2004.01.017 LI Ren. Megasonic cleaning technology analysis and application[J]. Equipment for Electronic Products Manufacturing, 2004(1): 63-66. DOI: 10.3969/j.issn.1004-4507.2004.01.017
[3] 储佳, 马向阳, 杨德仁, 等. 硅片清洗研究进展[J]. 半导体技术, 2001(3): 17-19, 34. DOI: 10.3969/j.issn.1003-353X.2001.03.005 CHU Jia, MA Xiangyang, YANG Deren, et al. Silicon wafer cleaning[J]. Semiconductor Technology, 2001(3): 17-19, 34. DOI: 10.3969/j.issn.1003-353X.2001.03.005
[4] 曹秀芳, 姚立新, 祝福生, 等. 硅片湿法清洗工艺技术及设备发展趋势[J]. 电子工业专用设备, 2011, 40(4): 9-13, 28. DOI: 10.3969/j.issn.1004-4507.2011.04.002 CAO Xiufang, YAO Lixin, ZHU Fusheng, et al. Wafer surface wet chemistry rinse technics and equipment making technology[J]. Equipment for Electronic Products Manufacturing, 2011, 40(4): 9-13, 28. DOI: 10.3969/j.issn.1004-4507.2011.04.002
[5] 王宇, 蔡亚梅, 滕霖. 超光滑表面清洗技术现状及发展趋势[J]. 航空精密制造技术, 2003(2): 1-4, 9. DOI: 10.3969/j.issn.1003-5451.2003.02.001 WANG Yu, CAI Yamei, TENG Lin, Status and trends of cleaning technology for super polished surfaces[J]. Aviation Prescision Manufacturing Technology, 2003(2): 1-4, 9. DOI: 10.3969/j.issn.1003-5451.2003.02.001
[6] WU Y, Franklin C, Bran M, et al. Acoustic property characterization of a single wafer megasonic cleaner[J]. Semiconductor Fabtech, 1999(9): 177.
[7] 史霄, 郭春华, 杨师, 等. CMP设备兆声清洗原理及应用[J]. 电子工业专用设备, 2015, 44(11): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DGZS201511008.htm SHI Xiao, GUO Chunhua, YANG Shi, et al. The megasonic cleaning theory and its application in the post CMP cleaning[J]. Equipment for Electronic Products Manufacturing, 2015, 44(11): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DGZS201511008.htm
[8] 张伟锋, 周国安, 詹阳. CMP后的晶圆清洗过程研究[J]. 电子工业专用设备, 2008(6): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DGZS200806010.htm ZHANG Weifeng, ZHOU Guoan, ZHAN Yang. Study on post-CMP clean process[J]. Equipment for Electronic Products Manufacturing, 2008(6): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DGZS200806010.htm
[9] 刘传军, 赵权, 刘春香, 等. 硅片清洗原理与方法综述[J]. 半导体情报, 2000, 37(2): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ200002005.htm LIU Chuanjun, ZHAO Quan, LIU Chunxiang, et al. Theory and method of silicon wafer cleaning[J]. Semiconductor Information, 2000, 37(2): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ200002005.htm
[10] 李相鑫, 杨慧毓, 李渊, 等. 无损伤气液两相雾化清洗系统研发[J]. 电子测试, 2019, 24: 98-99. https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC201924040.htm LI Xiangxin, YANG Huiyu, LI Yuan, et al. Study of the damage free dual-fluid spray cleaning nozzle and cleaning method[J]. Electronic Test, 2019, 24: 98-99. https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC201924040.htm
[11] Kanno I. Wafer cleaning by water and gas mixture with high velocity[J]. The Electrochemical Society Proceeding, 1997, 35: 54-61.
[12] Hirano H, Sato K, Osaka T, et al. Damage-free ultradiluted HF/nitrogen jet spray cleaning for particle removal with minimal silicon and oxide loss[J]. Electrochemical and Solid State Letters, 2006, 9(2): 62-65.
[13] LI J, Sih V, ZHAN H. Advanced wet clean technology at lightly doped drain layers in FinFET[J]. ECS Transactions, 2016, 75(5): 185-190.
[14] LU W, XIE B, LI Z F. An innovative jet spray for better particle removal efficiency in single wafer damage-free cleans for 65 nm node and beyond[C]//ECS Meeting Abstracts, 2007, 18: 1042.
[15] Tanaka T, Sato M, Kobayashi M, et al. Development of a novel advanced spray technology based on investigation of droplet energy and pattern damage[C]//Solid State Phenomena, Trans Tech Publications Ltd, 2012, 187: 153-156.
[16] TENG Y, CUI H, HEX, et al. Damage free removal of nano-particles with dual-fluid spray nozzle cleaning[C]// China Semiconductor Technology International Conference (CSTIC) of IEEE, 2016: 1-3.
[17] 李仁. 半导体IC清洗技术[J]. 半导体技术, 2003(9): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTJ200309012.htm LI Ren. Semi-conductor IC cleaning technology[J]. Semiconductor Technology, 2003(9): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTJ200309012.htm
[18] 伏国秀, 刘定斌, 乔友学. 晶圆清洗过程中静电电压超标原因与改进[J]. 电子与封装, 2012, 12(4): 31-33, 37. https://www.cnki.com.cn/Article/CJFDTOTAL-DYFZ201204008.htm FU Guoxiu, LIU Dingbin, QIAO Youxue. The causes and improvement of exceeding the standard electrostatic potential in wafer cleaning process after sawing[J]. Electronics & Packing, 2012, 12(4): 31-33, 37. https://www.cnki.com.cn/Article/CJFDTOTAL-DYFZ201204008.htm
[19] 张瑜, 卞玉洋. 光刻工艺中硅片表面静电现象研究[J]. 功能材料与器件学报, 2020, 26(4): 290-299. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCQ202004008.htm ZHANG Yu, BIAN Yuyang. Investigation of wafer surface static electricity in lithography process[J]. Journal of Functional Materials and Devices, 2020, 26(4): 290-299. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCQ202004008.htm
[20] Light T S, Kingman B, Bevilacqua A C. The conductivity of low concentrations of CO2 dissolved in ultrapure water from 0-100℃[C]//209th American Chemical Society National Meeting. 1995: 2-6.
[21] Kalantari D, Tropea C. Phase doppler measurements of spray impact onto rigid walls[J]. Exp. Fluids, 2007, 43: 285-296.
[22] Wostyn K, Wada M, Sano K I, et al. Spray systems for cleaning during semiconductor manufacturing[C/OL]//22nd European Conference on Liquid Atomization and Spray Systems, 2008: https://www.semanticscholar.org/paper/SPRAY-SYSTEMS-FOR-CLEANING-DURING-SEMICONDUCTOR-Wostyn-Wada/590875d2408ceb18b97969233db526e62205a1a7.
[23] Yarin A L, Weiss D A. Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity[J]. Fluid Mech. 1995, 283: 141-173.
[24] SUN Z, HAN R. Numerical studies on nano-particle removal with micro-droplet spray[C]// 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2006: 303-305.
-
期刊类型引用(10)
1. 马庆禄,汪曦洪,马恋,段学锋. 隧道内不均匀照度下无人驾驶视觉融合感知方法. 应用光学. 2025(01): 89-101 . 百度学术
2. 段锦,张昊,宋靖远,刘举. 深度学习偏振图像融合研究现状. 红外技术. 2024(02): 119-128 . 本站查看
3. 陈锦妮,陈宇洋,李云红,拜晓桦. 基于结构与分解的红外光强与偏振图像融合. 红外技术. 2023(03): 257-265 . 本站查看
4. 张哲卿,朱志宇,魏莱,古静,顾健,臧旭. 复杂海面背景下船舶红外偏振图像融合方法. 电光与控制. 2023(07): 68-72 . 百度学术
5. 张媛,陆小妍,郭群,邱建博,缪正飞. 基于主成分分析和双树复小波变换的CT和MRI图像融合改进算法研究. 中国医学装备. 2022(04): 7-12 . 百度学术
6. 王晓娜,潘晴,田妮莉. 基于NSST-DWT-ICSAPCNN的多模态图像融合算法. 红外技术. 2022(05): 497-503 . 本站查看
7. 田立凡,杨莘,梁佳明,吴谨. 基于SGWT和多显著性的红外与可见光图像融合. 红外技术. 2022(07): 676-685 . 本站查看
8. 安晓东,李亚丽,王芳. 汽车驾驶辅助系统红外与可见光融合算法综述. 计算机工程与应用. 2022(19): 64-75 . 百度学术
9. 刘立群,顾任远,周煜博,火久元. 多尺度分解双寻优策略SPCNN的果园苹果异源图像融合模型. 农业工程学报. 2022(17): 158-167 . 百度学术
10. 贺兴容,龚奕宇,范松海,吴天宝,刘益岑,刘小江. 基于帧差检测技术与区域特征的红外与可见光图像融合算法. 现代电子技术. 2019(01): 57-61 . 百度学术
其他类型引用(14)