非均匀离散化有限差分法应用于InAs/GaSb超晶格微带计算

Finite Difference Method on Non-Uniform Meshes Applied to Mini-Band Calculations in InAs/GaSb Superlattices

  • 摘要: 基于k·p微扰理论的8带Kane模型和Lüttinger-Kohn模型是计算锑化物二类超晶格微带结构的有效手段,常用于锑化物二类超晶格材料和器件结构设计。在8带k·p模型基础上用非均匀离散化有限差分法构建长波InAs/GaSb超晶格和中波InAs/GaSb超晶格的总矩阵。通过计算超晶格总哈密顿矩阵的本征值对超晶格在波矢空间的E-k关系进行数值求解,得到长波InAs/GaSb超晶格和中波InAs/GaSb超晶格在波矢空间高对称点附近的微带(mini-band)结构。其中中波和长波超晶格的有效带隙分别为0.247 eV和0.109 eV,与均匀网格离散化方案的计算结果一致,并与以相同超晶格结构作吸收层的器件100%截止波长测试结果一致。非均匀网格离散化方案与均匀网格离散化方案相比,在保证精算准确性的前提下,能显著提升InAs/GaSb超晶格微带结构的数值计算效率。

     

    Abstract: Based on the k·p perturbation theory, the 8-band Kane model and 8-band Lüttinger-Kohn model are effective means for calculating the mini-band structures of type Ⅱ superlattices, and are commonly used in the design of type Ⅱ superlattice materials and device structures. Base On the eight-band k·p model, the total Hamiltonian matrix for long-wavelength InAs/GaSb superlattices and medium-wavelength InAs/GaSb superlattices are constructed separately using the finite difference method based on non-uniform discretization. The numerical solution of the dispersion relation for the superlattice within the wavevector space are obtained by calculating the eigenvalues of the Hamiltonian matrix. This process shows the structure of mini-bands adjacent to the Γ point for both the long- and medium-wavelength InAs/GaSb superlattice. The effective band gaps of the medium-wavelength and long-wavelength superlattices are determined to be 0.247 eV and 0.109 eV, respectively. These values are consistent with both the uniform discretization calculations and the 100% cutoff wavelength measurements. Compared with the uniform discretization, the non-uniform discretization can save a significant amount of computation time in the InAs/GaSb superlattice mini-band calculation while ensuring accuracy.

     

/

返回文章
返回