Research Progress of Black Silicon Photoelectric Detection Materials and Devices
-
摘要: 黑硅作为一种新型光电材料,在光伏太阳能电池、光电探测器、CMOS图像传感器等领域被广泛研究,其中黑硅的光电探测技术备受关注,近些年来也取得了重要的研究进展。本文首先简单介绍了黑硅材料的结构,然后讨论了基于飞秒激光刻蚀法、湿法腐蚀、反应离子刻蚀法等方法制备的黑硅材料的性质。其次概述了基于以上方法制备的不同黑硅光电探测器的结构及性能,并讨论了黑硅器件在不同领域的应用。最后对黑硅光电探测技术进行了分析与展望,探讨了黑硅材料及器件未来的发展方向。Abstract: As a new photoelectric material, black silicon has been widely studied in photovoltaic solar cells, photodetectors, CMOS image sensors and other fields. Among them, the photoelectric detection technology of black silicon has attracted much attention, and important research progress has been made in recent years. In this review, the structure of black silicon materials has been firstly introduced, then the properties of black silicon materials prepared by femtosecond laser etching, wet etching and reactive ion etching are briefly discussed. Secondly, the structure and performance of different black silicon photodetectors based on the above preparation methods are summarized, then the application of black silicon devices in different fields is discussed. Finally, the photoelectric detection technology of black silicon is analyzed and prospected, and the future development direction of black silicon materials and devices is discussed.
-
Keywords:
- black silicon /
- photodetectors /
- research progress
-
0. 引言
在太阳辐射波段中,受到大气衰减的影响,200~300 nm紫外辐射被臭氧层吸收而无法到达地球表面,被称为“日盲区”。由于导弹尾部燃料的燃烧,产生的辐射范围从短波紫外到可见光谱,为紫外告警提供可能。紫外告警技术正是通过对导弹尾焰中“日盲”紫外波段的探测,对目标进行判断及定位,从而采取有效的规避及拦截手段。紫外告警系统对目标的探测优势在于:紫外背景辐射较少、被动式探测、结构简化、可靠性高且兼容性强[1]。
国内的紫外告警技术研究起步较晚,目前国内紫外告警系统的告警距离与国外告警距离存在差距,而光学系统相对孔径的提高与系统透过率的增大可提高告警系统的告警距离,达到国外告警的距离水平。
紫外告警技术针对光学系统而言,要求光学系统具有大视场与大相对孔径、结构简单、光能损失较小等特点。国内已有的紫外光学系统的设计中,文献[2]中,光学系统由6片透镜组成,视场8°,系统的相对孔径为1/3.5,采用标准球面镜进行设计。文献[3]中,光学系统由5片透镜组成,系统的视场为40°,相对孔径为1/3,系统采用一个衍射元件和两个非球面校正像差,非标准球面镜的使用增加了系统加工的难度与成本。文献[4]中,光学系统由6片透镜组成,相对孔径达到1/2,采用标准球面镜,但是系统视场角较小,仅有10°,满足长焦距的特点但不满足大视场要求。同样在文献[5]中,光学系统采用了卡塞格林系统,应用于对日盲紫外太阳跟踪预警系统的研究,视场角只有1°,但满足长焦距的特点。
本文主要工作是设计工作波段与AlGaN光阴极日盲紫外像增强器光谱响应范围相匹配的光学系统。与上述已有的光学系统相比,具有大视场,大相对孔径的特点,对于紫外辐射的会聚能力更强,且系统由5片透镜构成,减少了光能损失。光学系统的传递函数满足探测器需求,成像质量良好且系统均采用标准球面结构进行设计,更有利于加工,避免了使用非球面与衍射元件为加工带来的难度。
1. 日盲紫外告警系统
日盲紫外告警系统是由光学系统、光电转换系统、接收系统组成。日盲紫外告警系统工作原理(如图 1所示)是探测导弹尾焰辐射在200~300 nm的波段并对其所观测的空间区域进行成像。由于在太阳辐射波段中,200~300 nm的紫外辐射被臭氧层吸收而无法到达地球表面,因此200~300 nm的紫外光谱区被称为“日盲区”,为紫外告警系统提供良好的背景条件[6]。日盲紫外告警系统工作方式是光学系统将所接收到的辐射进行过滤保证进入光学系统的辐射在工作波段内,进入光电阴极引起光谱响应将光子转换成电子,后经微通道板在高压加速的情况下倍增的电子轰击荧光屏后,穿过反射铝膜激发荧光粉进行发光成像在荧光屏上,并通过光锥耦合将所成的像照射在高灵敏CCD成像传感器上,目标将以一个点源的形式表征于图像上,经数字化后根据时间及空间特性进行信号处理,实时探测并判断精确方向得出位置并进行距离的估算。本文采用日盲紫外像增强器进行成像,紫外告警系统是以紫外探测器件为核心,接受来自目标或者目标反射的紫外辐射信号,经过紫外探测成像器件进行光电转换,电子倍增,信号转换以后进行输出[7]。
2. 光学系统设计
2.1 光学系统的设计指标
目前国内告警光学系统由6个以2×3组合形式排列的光学系统组成,整个告警系统的空间视场角为80°×120°,单个光学系统最大视场为40°。为满足国内告警系统的结构形式,本文在初始结构的基础上,不增加透镜数量或改变面型的情况下使用标准球面进行设计,将视场设置为40°,光学系统进行2×3的组合排列,以匹配AlGaN像增强器的探测器。物体成像在像增强器像面上,像面大小约为18 mm,焦距、像面以及视场角(2ω)之间关系,利用公式y'=f'·tanω',可算出焦距的大小约为:f'=21.22 mm。考虑到系统机械结构与径向尺寸的影响,系统的入瞳直径大小设为9 mm,因此系统的相对孔径大小为$\frac{D}{{f'}} \approx \frac{1}{{2.36}} \approx \frac{1}{{2.5}}$。综上所述,系统的设计指标如下:
工作波段:240~280 nm
视场角:2ω=40°
焦距:f'=21.22 mm
相对孔径:$\frac{D}{{f'}} \approx \frac{1}{{2.5}}$
探测器像元尺寸为:11.9 μm×11.9 μm
2.2 光学系统的选型与初始结构的确定
紫外光学系统分为折射式光学系统、反射式光学系统和折返式光学系统。折射式光学系统具有大视场、透过率高等特点,但基本结构形式选择取决于多方面因素影响,且像差校正较难。由于本文设计的是大视场光学系统,反射式光学系统在实现大视场时,结构尺寸以及遮拦都比较大,系统的布局困难,成像质量较好但对杂散辐射较为敏感,有较大的能量损失。折反式系统可采用球面镜作为主镜减少加工难度,满足高分辨率及相对孔径大的要求,但是中心存在遮拦,检验装调比较复杂。由于探测波段在紫外的日盲波段,能量低,为保证能量尽可能被探测到,选择折射式光学系统。
在光组的设计中,初始结构的确定一般分为解析法(PW法)与缩放法两种情况,因此需要根据实际情况选择合适的方法,再利用相关软件进行分析。对于像差的校正与优化通常是通过透镜的厚度、透镜的曲率、透镜材料等相关因素的相互配合完成,通常也会采取其他方法如改变面形与增加多重结构等。根据设计要求,查阅相关文件,确定初始结构参数为:工作波长为240~280 nm,视场角为10°,焦距为126.8 mm,相对孔径为1/4的镜头作为本设计的初始结构。
2.3 光学系统的设计难点
紫外光学系统设计中需对系统的像差进行校正,对于紫外系统而言,影响系统最大像差是色差的影响。校正色差的方法是选择两种阿贝数差异较大的玻璃进行双胶合或者双分离透镜的设计。但在紫外波段中,光学玻璃材料的选择性不大且色散系数的差别较小,因此紫外光学系统的色差校正较为困难。而系统相对孔径较大,意味着光学材料的折射率更高,但是紫外玻璃选择十分有限,折射率小于1.46,因此在设计中会导致透镜数量的增加或者透镜厚度的变大,降低光学系统的透过率,增大设计难度。
2.4 光学系统的设计过程
因此,本文的设计思路是根据选择的初始结构,将其各尺寸乘以缩放比先进行缩放,得到所要求的结构。缩放后的结构,其视场角和相对孔径的大小不符合设计要求,因此在后期优化中不断提高视场角和相对孔径的大小,其中视场角的大小按照10°、20°、30°、40°递增,相对孔径的大小按照1/4、1/3、1/2.5增加。对于缩放后的初始结构的优化按照塞得和数系数对光学系统的影响进行优化。进行缩放焦距后,控制曲率半径与透镜间隔进行优化,提高成像质量并避免透镜表面进行重叠失形,进而对镜片厚度进行控制,确保系统的合理性。增大视场时考虑边缘视场的像差影响,设置合理的渐晕拦截掉边缘不利于成像的光线。
为了保证进入系统的波长在工作波段范围内,需要在设计过程中在光学系统前端增加一个滤光片。又由于光学系统是基于AlGaN光阴极日盲紫外像增强器的基础上进行设计的,因此光学系统成像的像面应该是日盲紫外像增强器的光电阴极表面,由于光电阴极存在一层窗口玻璃基底,因此需要成像在光电阴极窗口玻璃的后端。在光学系统结构设计合理后,加入窗口玻璃的模型,进而对系统继续优化,以保证成像质量。经过选型,扩大视场角与增大相对孔径,加入滤光片与光电阴极的窗口玻璃优化后,得到最终的光学系统。由5片透镜组成,其中第一片、第三片与第四片材料为CaF2,第二片和第五片的材料为紫外熔石英。完成设计后的光学系统二维结构如图 2所示。
2.5 像质评价
紫外告警系统中的紫外光学系统不仅要对目标辐射的能量进行收集探测,还需进行精确成像。因此不能仅仅只用传统评价光学系统成像质量的光学传递函数曲线作为绝对指标来评价,还需要结合光学系统的衍射能量分布曲线图等来共同评判其成像质量的优劣。本文采用了像点衍射能量分布图、点列图、点扩散函数图、光学系统的相对照度图及光学传递函数曲线图(modulation transfer function,MTF)等共同作为紫外光学系统的评价标准。
图 3为光学系统的衍射能量分布图,是以离主光线或物点的像的重心的距离为函数的包围能量圈占总能量的百分比。由图 3可看出像素点大小在7 μm时,各个视场的衍射的包围能量圈能够达到80%;像素点大小在8 μm时,各个视场的衍射的包围能量圈能够达到90%;10 μm时各个视场已逐渐接近衍射极限,说明此时光线基本成像的范围在10 μm,满足成像在一个像元大小内。
图 4所示为光学系统的点列图。点列图形成原因是在光线成像的过程中,由一点发出的许多光线经过光学系统成像以后,由于像差存在导致光线与像面不会交于一点而是分布在一定范围内的弥散斑图形。由图 4可知,弥散斑的半径约7.54 μm,实验室使用的CCD像元面积约11.9 μm,满足设计要求。
图 5为光学系统的点扩散函数图,点扩散函数是指一个理想的几何物点,经过光学系统后其像点的能量展开情况。利用快速傅里叶变换的方法近似计算衍射的点扩散函数。由图 5可知,对于经过光学系统会聚在像点的光强能量展开较少,能量集中度较好。
图 6为光学系统的相对照度图,是像面单位面积的响度强度,是计算以径向视场坐标y为函数的相对照度。由图 6可知,整个像面照度均匀,在0.7视场即对应图中14°时的能量达到80%;边缘视场的照度值达到50%。由于设置渐晕,边缘视场相对于中心视场的照度下降幅度较大,但整体比较均匀。
图 7为光学系统的光学传递函数图(MTF图),反映了光学系统对不同频率成分的传递能力。由光学传递函数图(MTF图)可知系统内各个视场的MTF曲线平直,系统的0.7视场与边缘视场均具备良好的成像质量。在空间频率为40 lp/mm时,轴上不小于0.8,轴外不小于0.6,满足探测器需求,成像质量良好。
3. 总结
本文根据日盲紫外告警系统的特点设计了满足探测要求的紫外光学系统。该系统的工作波段在240~280 nm,采用5片透镜组成,且结构均为标准球面镜,透镜材料为氟化钙和紫外熔石英,成像在日盲紫外像增强器的光电阴极的窗口玻璃后,具有大相对孔径的特点。焦距为21.22 mm,视场角为40°,相对孔径为1/2.5。从系统的点列图、能量分布曲线图、MTF曲线图分析可知,光学系统的成像质量好、结构简单紧凑、易于加工,具有很高的应用价值和实用性,满足导弹告警系统的使用要求。
-
图 1 不同方法制备的黑硅的吸收率:(a) 湿法刻蚀[12];(b) 反应离子刻蚀[28];(c) 飞秒激光刻蚀[10];(d) 飞秒激光刻蚀[29];(e)湿法刻蚀[30];(f) 湿法刻蚀[31]
Figure 1. Absorptance of different black silicon prepared by various methods: (a) Wet etching[12]; (b) Reactive ion etching[28]; (c) Femtosecond-laser etching[10]; (d) Femtosecond-laser etching[29]; (e) Wet etching [30]; (f) Wet etching[31]
图 2 n+/n型黑硅光电探测器:(a)和(b)器件响应率及响应电流[6];(c)和(d)器件结构及响应电流[32];(e)和(f)器件结构及响应率[16];(g)器件响应率及探测率[33];(h)和(i)器件结构及响应率[20, 35]
Figure 2. n+/n type of black silicon photodetector: (a) and (b) Device responsivity and response current[6]; (c) and (d) Device structure and response current[32]; (e) and (f) Device structure and responsivity[16]; (g) Device responsivity and detectivity[33]; (h) and (i) Device structure and responsivity[20, 35]
图 3 n+/p型黑硅光电探测器:(a)和(b)器件结构及外量子效率[9];(c)和(d)器件结构及响应率[10];(e)和(f)器件结构及响应率[11];(g)、(h)和(i)黑硅吸收率、器件结构及响应率[13, 36]
Figure 3. n+/p type of black silicon photodetector: (a) and (b) device structure and EQE[9]; (c) and (d) device structure and responsivity[10]; (e) and (f) device structure and responsivity[11]; (g), (h) and (i) absorptance of black silicon, device structure and responsivity[13, 36]
图 4 PIN型黑硅光电探测器:(a)和(b)器件结构及响应率[19];(c)和(d)器件结构及模拟响应率[37];(e) 器件结构[38];(f) 器件响应率[27];(g)器件结构[22];(h)器件响应率[24]
Figure 4. PIN type of black silicon photodetector: (a) and (b) Device structure and responsivity[19]; (c) and (d) Device structure and analog responsivity[37]; (e) Device structure[38]; (f) Device responsivity[27]; (g) Device structure[22]; (h) Device responsivity[24]
图 5 飞秒激光制备的其他黑硅光电探测器:(a)和(b)器件结构及响应率[39];(c)、(d)和(e)器件结构及I-V曲线[40];(f)和(g)器件结构[41];(h) 器件结构[42-43]
Figure 5. Other black silicon photodetectors prepared by femtosecond laser: (a) and (b) Device structure and responsivity[39]; (c), (d) and (e) Device structure and I-V curve[40]; (f) and (g) Device structure[41]; (h) Device structure[42-43]
图 6 湿法腐蚀制备的黑硅光电探测器结构及性能图:(a) 器件结构[45];(b)和(c) 器件结构及响应率[12];(d) 器件结构[14];(e)器件结构[32];(f) 器件响应率[47];(g) 器件响应率[30];(h) 器件响应率[17];(i) 器件结构[51]
Figure 6. Structures and properties diagram of black silicon photodetector prepared by wet etching. (a) Device structure [45]; (b) and (c) Device structure and responsivity[12]; (d) Device structure[14]; (e) Device structure[32]; (f) Device responsivity[47]; (g) Device responsivity[30]; (h) Device responsivity[17]; (i) Device structure[51]
图 7 干法腐蚀制备的黑硅光电探测器结构及性能图:(a) 黑硅结构[56];(b)和(c) 器件EQE及内量子效率(IQE)[28];(d) 器件结构[15];(e)和(f) 器件结构及响应率[30];(g) 器件的EQE[57];(h) 黑硅微结构[58]
Figure 7. Structures and properties diagram of black silicon photodetector prepared by dry etching. (a) Microstructure of black silicon[56]; (b) and (c) EQE and IQE of device[28]; (d) Device structure[15]; (e) and (f) Device structure and responsivity[30]; (g) EQE of device[57]; (h) Microstructure of black silicon[58]
图 8 黑硅光电探测器应用及效果图:(a)和(b) CMOS成像效果[59];(c) 探测器结构阵列[60];(d) CMOS与CCD成像对比[61];(e)器件结构[62];(f) 柔性黑硅光电探测器[64];(g) CMOS成像效果[24];(h) CMOS成像效果[66]
Figure 8. Application and rendering of black silicon photodetector: (a) and (b) CMOS imaging effect[59]; (c) Detector array[60]; (d) CMOS and CCD imaging contrast[61]; (e) Device structure[62]; (f) Flexible black silicon photodetector[64]; (g) CMOS imaging effect[24]; (h) CMOS imaging effect[66]
表 1 黑硅光电探测器结构及性能参数
Table 1 The structures and performance parameters of black silicon photodetectors
Year Preparation method Structure Bias voltage/V Dark current Max responsivity/(A/W) EQE/% Wavelength range/nm Ref. 2005 Femtosecond-laser pulses n+/n -0.5 0.12 mA/cm2 120 - 400-1600 [5] 2006 Femtosecond-laser pulses n+/n -3 2.3 μA 119 - 700-1200 [6] 2010 - Photodiode - 120 nA/cm2 100 68 400-1200 [7] 2011 Wet etching MSM -1 - 58.8 - 400-700 [8] 2011 Nanosecond-laser pulses n+/p -12 - - 2500 700-1080 [9] 2012 Femtosecond-laser pulses n+/p -30 5 mA 300 - 240-1100 [10] 2012 Picosecond-laser pulses n+/p -5 - 16 - 400-1600 [11] 2013 Alkaline etching and metal assisted etching MSM -1 - 76.8 - 400-700 [12] 2013 Femtosecond-laser pulses n+/p -16 - 3.27 380 400-1200 [13] 2014 Electrochemical etching PIN - - 0.35 - 800-1100 [14] 2015 Inductively coupled plasma reactive ion etching PIN -1 150 mA/cm2 0.34 27 400-1640 [15] 2015 Femtosecond-laser pulses n+/n -3 10 μA 351 - 400-1600 [16] 2016 Metal-assisted chemical etching PIN -12 - 0.57 - 900-1100 [17] 2017 Inductively coupled plasma -reactive ion etching Photodiode - - - > 100 235-1200 [18] 2017 Femtosecond-laser pulses PIN - - 0.57 - 900-1100 [19] 2018 Nanosecond-laser pulses n+/n- -5 - 8 1007 400-1310 [20] 2019 Wet chemical etching Schottky -10 - 0.000458 - 1200-1600 [21] 2019 Femtosecond-laser pulses PIN -12 < 1 nA 0.57 66.7 900-1100 [22] 2020 Femtosecond-laser pulses n+-i -20 - 1097.60 - 400-1600 [23] 2020 Femtosecond-laser pulses PIN -0.1 - 0.56 - 1000-1200 [24] 2020 Femtosecond-laser pulses Photodiode -2 5.0 μA/cm2 120.6 - 400-1600 [25] 2021 Femtosecond-laser pulses Schottky -10 - 0.076 - 1310 [26] 2021 Femtosecond-laser pulses PIN - 700 pA 0.55 80 400-1100 [27] -
[1] Her T, Finlay R J, WU C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 1998, 73(12): 1673-1675. DOI: 10.1063/1.122241
[2] 马世俊. 黑硅光电探测器关键技术研究[D]. 成都: 电子科技大学, 2018. MA Shijun. Study on the Key Technology of the Black Silicon Optoelectronic Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
[3] Chou S, Krauss P, Renstrom P, et al. Imprint lithography with 25- nanometer resolution[J]. Science, 1996, 272(5258): 85-87. DOI: 10.1126/science.272.5258.85
[4] CHOU S, Keimel C, GU J, et al. Ultrafast and direct imprint of nanostructures in silicon[J]. Nature, 2002, 417(6891): 835-837. DOI: 10.1038/nature00792
[5] Carey J, Crouch C, SHEN M, et al. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes[J]. Optics Letters, 2005, 30(14): 1773-1775. DOI: 10.1364/OL.30.001773
[6] HUANG Z, Carey J, LIU M, et al. Microstructured silicon photodetector[J]. Applied Physics Letters, 2006, 89: 033506. DOI: 10.1063/1.2227629
[7] Pralle M U, Carey J E, Homayoon H, et al. Black silicon enhanced photodetectors: a path to IR CMOS[C]//Proc. of SPIE, 2010, 7660: 76600N.
[8] SU Y, JIANG Y, WU Z, et al. Spectral response of metal -semiconductor -metal photodetector based on black silicon[J]. Energy Procedia, 2011, 12: 615-619. DOI: 10.1016/j.egypro.2011.10.083
[9] Said A, Recht D, Sullivan J, et al. Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes[J]. Applied Physics Letters, 2011, 99(7): 1850-236.
[10] 刘长江. 基于飞秒激光非平衡掺杂技术黑硅材料的制备与光电器件研究[D]. 长春: 吉林大学, 2012. LIU Changjiang. The Fabrication of Black Silicon and its Application in Optoelectronic Devices Based on Femtosecond Laser Non-equilibrium Doping Technique[D]. Changchun: Jilin University, 2012.
[11] HU S, HAN P, WANG S, et al. Improved photoresponse characteristics in Se -doped Si photodiodes fabricated using picosecond pulsed laser mixing[J]. Semiconductorence & Technology, 2012, 27(10): 102002.
[12] SU Y, LI S, WU Z, et al. High responsivity MSM black silicon photodetector[J]. Materials Science in Semiconductor Processing, 2013, 16(3): 619-624. DOI: 10.1016/j.mssp.2012.11.008
[13] WANG X. Fabrication of tellurium doped silicon detector by fmtosecond laser and excimer laser[J]. Chinese Journal of Lasers, 2013, 40(3): 0302001. DOI: 10.3788/CJL201340.0302001
[14] 余峰. 微结构硅的制备及其PIN单元器件试制[D]. 成都: 电子科技大学, 2014. YU Feng. Fabrication of Microstructured Silicon and its Application in PIN Photodetector[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
[15] Steglich M, Oehme M, Käsebier T, et al. Ge-on-Si photodiode with black silicon boosted responsivity[J]. Appl. Phys. Lett. , 2015, 107: 051103. DOI: 10.1063/1.4927836
[16] 赵丽. 黑硅光电探测器的制备及性能研究[D]. 天津: 南开大学, 2015. ZHAO Li. A Research on Fabrication and Properties of Black Silicon Photodetector[D]. Tianjin: Nankai University, 2015.
[17] ZHONG H, GUO A, GUO G, et al. The enhanced light absorptance and device application of nanostructured black silicon fabricated by metal-assisted chemical etching[J]. Nanoscale Research Letters, 2016, 11: 322. DOI: 10.1186/s11671-016-1528-0
[18] Heinonen J, Juntunen M, Laine H S, et al. Black silicon n-type photodiodes with high response over wide spectral range[C]//Proc. of SPIE, 2017, 10231: 102310X.
[19] MENG W, ZHONG H, HOU W, et al. Comparison of different etching methods on the morphology and semiconductor characters of black silicon[C]//IOP Conf. Series: Materials Science and Engineering, 2017, 250: 012015.
[20] ZHAO J, LI C, LI X, et al. NIR photodetector based on nanosecond laser-modified silicon[J]. IEEE Transactions On Electron Devices, 2018, 65(11): 4905-4909. DOI: 10.1109/TED.2018.2869912
[21] HU F, DAI X, ZHOU Z, et al. Black silicon Schottky photodetector in subbandgap near-infrared regime[J]. Optics Express, 2019, 27(3): 3161-3168. DOI: 10.1364/OE.27.003161
[22] 钟豪. 晶体硅表面的刻蚀与元素掺杂及其物理效应[D]. 成都: 电子科技大学, 2019. ZHONG Hao. Surface Etching and Doping on Monocrystalline Silicon and The Resulted Physical Effects[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
[23] HUANG S, WU Q, JIA Z, et al. Black silicon photodetector with excellent comprehensive properties by rapid thermal annealing and hydrogenated surface passivation[J]. Advanced Optical Materials, 2020, 9(7): 1901808.
[24] 王稞. 微结构硅基材料的超饱和掺杂及其光电特性的研究[D]. 长春: 中国科学院大学长春光学精密机械与物理研究所, 2020. WANG Ke. Study on Hyperdoping and Photoelectric Properties of Microstructured Silicon-Based Material[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020.
[25] JIA Z, WU Q, JIN X, et al. Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure[J]. Optics Express, 2020, 28(4): 5239-5247. DOI: 10.1364/OE.385887
[26] YANG Y, ZHAO J, LI C, et al. Sub-bandgap absorption and photo-response of molybdenum heavily doped black silicon fabricated by a femtosecond laser[J]. Optics Letters, 2021, 46(13): 3300-3303. DOI: 10.1364/OL.425803
[27] 郑泽宇, 罗谦, 徐开凯, 等. 基于黑硅微结构的全硅PIN光电探测器[J]. 光电工程, 2021, 48(5): 200364. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202105005.htm ZHENG Zeyu, LUO Qian, XU Kaikai, et al. All-silicon PIN photodetector based on black silicon microstructure[J]. Opto-Electronic Engineering, 2021, 48(5): 200364. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202105005.htm
[28] Martin S, Matthias Z, Astrid B, et al. A normal-incidence PtSi photoemissive detector with black silicon light-trapping[J]. Journal of Applied Physics, 2013, 114: 183102. DOI: 10.1063/1.4829897
[29] Younkin R, Carey J, Mazur E, et al. Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses[J]. Journal of Applied Physics, 2003, 93(5): 2626-2629. DOI: 10.1063/1.1545159
[30] 盛浩. PIN黑硅原理性探测器试制[D]. 成都: 电子科技大学, 2016. SHENG Hao. An Investigation of Si-Pin Photodetector Based on Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2016.
[31] Shahnawaz U, Md R H, Mohd Z P. Aluminium-assisted chemical etching for fabrication of black silicon[J]. Materials Chemistry and Physics, 2021, 265: 124469. DOI: 10.1016/j.matchemphys.2021.124469
[32] 王健波. 黑硅材料的制备及器件研究[D]. 成都: 电子科技大学, 2015. WANG Jianbo. Study of Preparation and Related Device of Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2015.
[33] JIN X, WU Q, HUANG S, et al. High-performance black silicon photodetectors operating over a wide temperature range[J]. Optical Materials, 2021, 113: 110874. DOI: 10.1016/j.optmat.2021.110874
[34] YU X, LV Z, LI C, et al. The optical and electrical properties of Co-doped black silicon textured by a femtosecond laser and Its Application to Infrared Light Sensing[J]. IEEE Sensors Journal, 2016, 16(13): 5227-5231. DOI: 10.1109/JSEN.2016.2564500
[35] ZHAO J, LV Z, LI C, et al. Infrared photodiode of textured silicon irradiated under mixed gas by femtosecond laser[J]. IEEE Sensors Journal, 2017, 17(4): 1000-1004.
[36] WANG X, HUANG Y, LIU D, et al. High response in a tellurium -supersaturated silicon photodiode[J]. Chinese Physics Letters, 2013, 30(3): 36101-036101. DOI: 10.1088/0256-307X/30/3/036101
[37] 宣曜宇. 飞秒激光诱导的Si能级调控及近红外增强探测器研究[D]. 成都: 电子科技大学, 2017. XUAN Yaoyu. Research of the Energy Level in Si Induced by Femtosecond Laser and the Performance of Enhanced Near Infrared Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
[38] 郭国辉. 黑硅PIN四象限探测器研究[D]. 成都: 电子科技大学, 2017. GUO Guohui. An Investigation of Si-PIN Four Quadrant Photodetector Based On Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
[39] 王延超. 微结构硅基近红外材料及其光电特性研究[D]. 长春: 中国科学院大学长春光学精密机械与物理研究所, 2017. WANG Yanchao. Microstructure Silicon-based Near-infrared Materials and its Optics, Photoelectric Characteristics Research[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017.
[40] 于心月. 飞秒激光过渡金属的过饱和掺杂黑硅的研究[D]. 长春: 吉林大学, 2018. YU Xinyue. Study on Supersaturated Doped Black Silicon with Transition Metal by Femtosecond Laser[D]. Changchun: Jilin University, 2018.
[41] 李春昊. 脉冲激光黑硅材料的制备及红外光电器件研究[D]. 长春: 吉林大学, 2018. LI Chunhao. Research of Black Si Material Fabricated by Pulsed Laser Irradiation and its Applications in Infrared Optoelectronic Detections[D]. Changchun: Jilin University, 2018.
[42] 祝威. 近红外增强型硅双四象限光电探测器研究[D]. 成都: 电子科技大学, 2020. ZHU Wei. Research on Double Quadrants Silicon Photoelectric Detector with Near Infrared Enhancement[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[43] MI G, LV J, QUE L, et al. A Dual Four-Quadrant Photodetector Based on Near-Infrared Enhanced Nanometer Black Silicon[J]. Nanoscale Research Letters, 2021, 16: 38. DOI: 10.1186/s11671-021-03499-x
[44] MA S, LIU X, SUN H, et al. Enhanced responsivity of co-hyperdoped silicon photodetectors fabricated by femtosecond laser irradiation in a mixed SF6/NF3 atmosphere[J]. Journal of the Optical Society of America B, 2020, 37(3): 730-735. DOI: 10.1364/JOSAB.374044
[45] 苏元捷, 蒋亚东, 吴志明, 等. 势垒层对黑硅光电探测器性能影响的研究[J]. 光电子·激光, 2011, 22(10): 1339-1442. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201110001.htm SU Yuanjie, JIANG Yadong, WU Zhiming, et al. Influence of barrier layer on photoelectric properties of black silicon photodetectors[J]. Journal of Optoelectronics·Laser, 2011, 22(10): 1339-1442. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201110001.htm
[46] 张婷. 黑硅的湿法制备工艺及近红外探测应用研究[D]. 成都: 电子科技大学, 2014. ZHANG Ting. Preparation and Near-Infrared Detection Research of Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
[47] 廖家科. 微纳结构硅的制备及齐建华应用研究[D]. 成都: 电子科技大学, 2015. LIAO Jiake. Fabrication of Micro/Nano Structured Silicon and its Application in Photoelectrical Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2015.
[48] Hamamatsu Photonics. Silicon photodiode S1336-44BK for UV to near IR precision photometry[DB/OL]. http://www.hamamatsu.com.cn/product/17581.html.
[49] Moloney A M, Wall L, Mathewson A, et al. Novel black silicon PIN photodiodes[C]//Proc. of SPIE, 2006, 6119: 61190B.
[50] 宋轶佶. 拓宽黑硅吸收光谱范围技术研究[D]. 成都: 电子科技大学, 2020. SONG Yiji. Study on the Technology of Broadening the Absorption Spectrum Range of Black Silicon[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[51] 王文革, 李华高, 龙飞, 等. 黑硅微结构光敏二极管[J]. 半导体光电, 2015, 36(6): 892-894. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201506008.htm WANG Wenge, LI Huagao, LONG Fei, et al. Black silicon microstructure photodiodes[J]. Semiconductor Optoelectronics, 2015, 36(6): 892-894. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201506008.htm
[52] 黄建, 雷仁方, 江海波, 等. 基于湿法腐蚀工艺的高性能黑硅光电探测器[J]. 半导体光电, 2021, 42(4): 506-510. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG202104003.htm HUANG Jian, LEI Renfang, JIANG Haibo, et al. High performance black silicon photodetector based on wet etching process[J]. Semiconductor Optoelectronics, 2021, 42(4): 506-510. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG202104003.htm
[53] 王锦, 陶科, 李国峰, 等. 倒金字塔结构的黑硅PIN光电探测器的研究[J]. 光电子·激光, 2018, 29(12): 1270-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201812003.htm WANG Jin, TAO Ke, LI Guofeng, et al. Study of black silicon PIN photo-detector with inverted pyramidal structure[J]. Journal of Optoelectronics·Laser, 2018, 29(12): 1270-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201812003.htm
[54] Müllerová J, Scholtza L, Ďurišováb J, et al. Angle- and polarization resolved antireflection properties of black silicon prepared by electrochemical etching supported by external electric field[J]. Applied Surface Science, 2018, 461: 182-189. DOI: 10.1016/j.apsusc.2018.05.179
[55] XU G, CHENG S, CAI B. Black silicon as absorber for photo- thermal -electric devices[J]. Materials Express, 2018, 8(3): 294-298. DOI: 10.1166/mex.2018.1426
[56] HUANG Y, Chattopadhyay S, Jen Y J, et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures[J]. Nature Nanotechnology, 2007, 2(12): 770-774. DOI: 10.1038/nnano.2007.389
[57] Heinonen J, Haarahiltunen A, Serue M D, et al. High-sensitivity NIR photodiodes using black silicon[C]//Proc. of SPIE, 2020, 11276: 112760G.
[58] Kim K, Yoon S, Seo M, et al. Whispering gallery modes enhance the near-infrared photoresponse of hourglass-shaped silicon nanowire photodiodes[J]. Nature Electronics, 2019, 2(12): 572-579. DOI: 10.1038/s41928-019-0317-z
[59] Pralle M, Carey J, Homayoon H, et al. IR CMOS: infrared enhanced silicon imaging[C]//Proc. of SPIE, 2013, 8704: 870407.
[60] Petersen S D, Davidsen R S, Alcalá L R, et al. Improvement of infrared detectors for tissue oximetry using black silicon nanostructures[J]. Procedia Engineering, 2014, 87: 652-655. DOI: 10.1016/j.proeng.2014.11.572
[61] Pralle M, Carey J, Vineis C, et al. IR CMOS: the digital nightvision solution to sub-1 mLux imaging[C]//Proc. of SPIE, 2015, 9451: 945108.
[62] Juntunen M A, Heinonen J, Vähänissi V, et al. Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction[J]. Nature Photonics, 2016, 10(12): 777-781. DOI: 10.1038/nphoton.2016.226
[63] Garin M, Heinonen J, Werner L, et al. Black-silicon ultraviolet photodiodes achieve external quantum efficiency above 130%[J]. Physical Review Letters, 2020, 125: 117702. DOI: 10.1103/PhysRevLett.125.117702
[64] JIN X, SUN Y, WU Q, et al. High-performance free-standing flexible photodetectors based on sulfur-hyperdoped ultrathin silicon[J]. ACS Applied Materials and Interfaces, 2019, 11: 42385-42391. DOI: 10.1021/acsami.9b16667
[65] 申朝阳. 微纳米结构增强硅基太赫兹功能器件研究[D]. 成都: 电子科技大学, 2020. SHEN Chaoyang. Research on Micro-Nano Structure Enhanced Silicon- based Terahertz Functional Devices[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[66] Pralle M, Vineis C, Palsule C, et al. Ultra low light CMOS image sensors[C]//Proc. of SPIE, 2021, 11741: 117410E.
-
期刊类型引用(1)
1. 王玉莹,李劲东,孙鹤枝,李享. 中长波红外探测技术发展与空间应用进展(英文). Frontiers of Information Technology & Electronic Engineering. 2024(08): 1031-1057 . 百度学术
其他类型引用(2)