留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MBE生长InAs/GaSb Ⅱ类超晶格材料的界面控制方法分析

任洋 李俊斌 覃钢 杨晋 李艳辉 周旭昌 杨春章 常超 孔金丞 李东升

任洋, 李俊斌, 覃钢, 杨晋, 李艳辉, 周旭昌, 杨春章, 常超, 孔金丞, 李东升. MBE生长InAs/GaSb Ⅱ类超晶格材料的界面控制方法分析[J]. 红外技术, 2021, 43(4): 301-311.
引用本文: 任洋, 李俊斌, 覃钢, 杨晋, 李艳辉, 周旭昌, 杨春章, 常超, 孔金丞, 李东升. MBE生长InAs/GaSb Ⅱ类超晶格材料的界面控制方法分析[J]. 红外技术, 2021, 43(4): 301-311.
REN Yang, LI Junbin, QIN Gang, YANG Jin, LI Yanhui, ZHOU Xuchang, YANG Chunzhang, CHANG Chao, KONG Jincheng, LI Dongsheng. Analysis of Interface Control Methods for InAs/GaSb Type-Ⅱ Superlattice Materials Grown by MBE[J]. Infrared Technology , 2021, 43(4): 301-311.
Citation: REN Yang, LI Junbin, QIN Gang, YANG Jin, LI Yanhui, ZHOU Xuchang, YANG Chunzhang, CHANG Chao, KONG Jincheng, LI Dongsheng. Analysis of Interface Control Methods for InAs/GaSb Type-Ⅱ Superlattice Materials Grown by MBE[J]. Infrared Technology , 2021, 43(4): 301-311.

MBE生长InAs/GaSb Ⅱ类超晶格材料的界面控制方法分析

详细信息
    作者简介:

    任洋(1990-),女,河北保定人,硕士,工程师,主要从事红外光电材料与器件方面的研究工作,E-mail:1195947744@qq.com

    通讯作者:

    孔金丞(1979-),男,云南南华人,研究员,博士,主要从事红外探测器材料与器件技术研究。E-mail:kongjincheng@163.com

  • 中图分类号: TN215, TN304

Analysis of Interface Control Methods for InAs/GaSb Type-Ⅱ Superlattice Materials Grown by MBE

  • 摘要: 本文系统地介绍了MBE外延生长InAs/GaSb Ⅱ类超晶格材料的界面控制方法,主要包括生长中断法、表面迁移增强法、Ⅴ族元素浸润法和体材料生长法。短波(中波)InAs/GaSb超晶格材料界面采用混合(mixed-like)界面,控制方法以生长中断法为主;长波(甚长波)超晶格材料界面采用InSb-like界面,控制方法采用表面迁移增强法(migration-enhanced epitaxy, MEE)或Sb soak法及体材料生长相结合。讨论分析了InAs/GaSb超晶格材料界面类型选择的依据,简述了界面控制具体实施理论,以及相关研究机构对于不同红外探测波段的超晶格材料界面类型及控制方法的选择。通过界面结构外延生长工艺设计即在界面控制方法的基础上进行快门顺序实验设计,有效地提高界面层的应力补偿效果,这对于长波、甚长波及双色(甚至多色)超晶格材料的晶体质量优化和器件性能提升具有重要意义。
  • 图  1  6.1 Å材料体系的晶格常数、禁带宽度和能带排列

    Figure  1.  The lattice constant, bandgap and energy band alignment for these 6.1Å family materials

    图  2  界面控制方法快门顺序[28]

    Figure  2.  The shutter sequence based on the interface control method

    图  3  超晶格样品在外延生长时快门开关顺序示意图[68]

    Figure  3.  Diagram of the shutter sequence during epitaxy growth of InAs/GaSb superlattice samples

    图  4  超晶格一个周期生长的快门顺序[58]

    Figure  4.  The shutter sequence of a periodic growth of InAs/GaSb superlattices

    图  5  在界面控制方法不变的基础上进行不同快门顺序设计[68]

    Figure  5.  The experimental design of different shutter sequences based on the interface control method

    表  1  国内相关科研机构所采用的不同探测波段的超晶格界面类型与控制方法

    Table  1.   The interface types and control methods of InAs/GaSb superlattices in different detection wavelength bands adopted byrelated research institutions in China

    Research institutions in China InAs/GaSb SLs structure (band) Interface types and interface control methods Year
    Institute of Semiconductors 4ML InAs/8MLGaSb SLs (short wave- length) Mixed-like interface; if InSb-like interface is formed (MEE method) 2008[69]
    50 periods of 4MLInAs/8MLGaSb SLs (short-wavelength) InAs-on-GaSb interface adopt interrupted growth epitaxy method; GaSb-on-InAs interface (InSb-like interface) adopts Sb soak method 2009[70]
    InAs/GaSb (4ML/8ML) SLs and InAs/GaSb(8ML/8ML) SLs Interrupted growth epitaxy method (a combination of unprotected interruption with bulk material growth method or conventional molecular beam epitaxy)
    Long-wavelength SLs PIN structure InSb interface; mixed-like interface: InAs-on-GaSb interface adopts GaAs-Like (As soak), GaSb- on-InAs interface adopts InSb-Like (a combination of bulk material growth, unprotected interruption and V group element soak) 2011[71]
    Long-wavelength SLs Pin device: absorption layer consists of 15.2ML InAs/10ML GaSb SLs or absorption layer consists of 16.2ML InAs/10.75ML GaSb SLs InSb interface 2012[72]
    Mid-wavelength SLs (7ML InAs/7ML GaSb) Interrupted growth epitaxy method 2012[22]
    Long-wavelength SLs (12ML InAs+0.8ML InSb/8ML GaSb+0.8 ML InSb) InSb-like interface (MEE method)
    Shanghai Institute of Technical Physics 9ML InAs/12ML GaSb SLs p-i-n structure (Mid-wavelength) InSb interface (MEE method) 2011[74]
    15ML InAs/7ML GaSb SLs PBIN structure InSb interface (MEE method) 2013[75]
    50 periods of 12ML InAs/12ML GaSb SLs InSb-like interface (MEE method) 2014[68]
    下载: 导出CSV

    表  2  国外相关科研机构所采用的不同探测波段的超晶格界面类型与控制方法

    Table  2.   The interface types and control methods of InAs/GaSb superlattices in different detection wavelength bands adopted byforeign related research institutions

    Foreign Research Institutions InAs/GaSb SLs structure (band) Interface types and interface control methods Year
    Université de Montpellier and Northwestern University An InAs/GaSb heterojunction allows a layer by layer growth mode InSb-like interface (MEE method) 2000[39]
    Université de Montpellier 10MLInAs/10MLGaSb SLs GaSb-on-InAs interface (InSb interface) adopts a combination of bulk material growth method and unprotected interrupted growth epitaxy method (conventional molecular beam epitaxy) 2004[26]
    University of New Mexico 13ML InAs/7ML GaSb SLs (~8-μm cutoff wavelength(300 K)) GaSb-on-InAs interface (InSb interface) adopts bulk material growth method or Sb-soak 2008[62]
    Absorption region of NBN detector: 322 periods of [1s As Soak time/13ML InAs/0.45ML InSb/7MLGaSb] SLs InSb interface (bulk material growth method)
    Absorption region of NBN detector: 13ML InAs/0.73ML InSb/7ML GaSb SLs (300 periods), contact layer: 13ML InAs (Si)/0.73ML InSb/7ML GaSb SLs InSb interface (bulk material growth method) 2010[49]
    Naval Research Laboratory(NRL) 40 periods of SLs structure: 8ML InAs/12ML GaSb and 1ML InSb or GaAs (8-12-l), as well as 8-8-1 and 12-8-1 Using MEE method to change the interface type[73]
    Institute of Electron Technology, Poland 9ML InAs/9ML GaSb SLs InAs-on-GaSb interface adopts GaAs-like (As soak); GaSb-on-InAs interface adopts InSb-like (Sb soak) 2011[67]
    下载: 导出CSV
  • [1] Sai-Halasz G A, Tsu R, Esaki L. A new semiconductor superlattice[J]. Applied Physics Letters, 1977, 30(12): 651-653. doi:  10.1063/1.89273
    [2] Esaki L. InAs-GaSb superlattices-synthesized semiconductors and semimetals[J]. Journal of Crystal Growth, 1981, 52(1): 227-240. http://www.sciencedirect.com/science/article/pii/0022024881901986
    [3] Smith D L, Mailhiot C. Proposal for strained type Ⅱ superlattice infrared detectors[J]. Journal of Applied Physics, 1987, 62(6): 2545-2548. doi:  10.1063/1.339468
    [4] Mailhiot C, Smith D L. Electronic structure of (001) and (111) growth axis InAs-Ga1-xInxSb strained-layer superlattices[J]. J. Vac. Sci. Technol. B., 1987, 5(4): 1268-1273. doi:  10.1116/1.583817
    [5] Chow D H, MilesR H, Sderstrm J R, et al. Growth and characterization of InAs-Ga1-xInxSb strained-layer superlattices[J]. Applied Physics Letters, 1990, 56(15): 1418-1420. doi:  10.1063/1.102486
    [6] YANG M J, Bennett B R. InAs/GaSb infrared photovoltaic detector at 77 K[J]. Electronics Letters, 1994, 30(20): 1710-1711. doi:  10.1049/el:19941138
    [7] Fuchs F, Weimer U, Pletschen W, et al. High performance InAs/Ga1-xInxSb superlattice infrared photodiodes[J]. Applied Physics Letters, 1997, 71(22): 3251-3253. doi:  10.1063/1.120551
    [8] Manijeh Razeghi, Yajun Wei, Junjik Bae, et al. Type Ⅱ InAs/GaSb superlattices for high-performance photodiodes and FPAs[A]. Proc. of SPIE[C]//2003, 5246: 501-511.
    [9] Razeghi M, Wei Y, Hood A, et al. Type Ⅱ superlattice photodetectors for MWIR to VLWIR focal plane arrays[C]//Proc. of SPIE, 2006, 6206: 62060N.
    [10] Robert Rehm, Martin Walther, Johannes Schmitz, et al. 2nd and 3rd generation thermal imagers based on type-Ⅱ superlattice photodiodes[C]//Proc. of SPIE, 2006, 6294: 6294041-6294047.
    [11] Rodriguez J B, Plis E, Bishop & G, et al. nBn structure based on InAs/GaSb type-Ⅱ strained layer superlattices[J]. Applied Physics Letters, 2007, 91(4): 043514. doi:  10.1063/1.2760153
    [12] Kim H S, Plis E, Rodriguez J B, et al. Mid-IR focal plane array based on type-Ⅱ InAs∕GaSb strain layer superlattice detector with nBn design[J]. Applied Physics Letters, 2008, 92(18): 183502. doi:  10.1063/1.2920764
    [13] Gunapala S D, Ting D Z, Hill C J, et al. Demonstration of 1 k×1 k long-wave and mid-wave superlattice infrared focal plane array[C]//SPIE, 2010, 7808: 78080201-78080206.
    [14] HUANG K W, Haddadi A, CHEN G, et al. Type-Ⅱ superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance[J]. Optics Letters, 2011, 36(13): 2560-2. doi:  10.1364/OL.36.002560
    [15] Gautam N, Naydenkov M, Myers S, et al. Three color infrared detector using InAs/GaSb superlattices with unipolar barriers[J]. Appl. Phys. Lett. 2011, 98: 121106. doi:  10.1063/1.3570687
    [16] Edward Kwei-wei Huang, Manijeh Razeghi. World's first demonstration of type-Ⅱ superlattice dual band 640×512 LWIR focal plane array[C]//Proc. of SPIE, 2012, 8268: 82680Z.
    [17] Razeghi M, Haddadi A, Hoang A M, et al. High-performance bias-selectable dual-band mid-/long -wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb Type-Ⅱ superlattices[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2013, 8704: 87040S.
    [18] Hoang A M, Dehzangi A, Adhikary S, et al. High performance bias-selectable three-color short-wave/mid-wave/long-wave infrared photodetectors based on type-Ⅱ InAs/GaSb/AlSb superlattices[J]. Rep, 2016, 6: 24144. http://pubmedcentralcanada.ca/pmcc/articles/PMC4823788/
    [19] Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays[J]. Journal of applied physics, 2009, 105(9): 4. doi:  10.1063/1.3099572
    [20] Mir R N, Frensley W R. Electrical design of InAs-Sb/GaSb superlattices for optical detectors using full band structure sp3s* tight-binding method and Bloch boundary conditions[J]. Journal of Applied Physics, 2013, 114(15): 153706. doi:  10.1063/1.4824365
    [21] Nguyen B M, Bogdanov S, Pour S A, et al. Minority electron unipolar photodetectors based on type Ⅱ InAs/GaSb/AlSb superlattices for very long wavelength infrared detection[J]. Applied Physics Letters, 2009, 95(18): 183502. doi:  10.1063/1.3258489
    [22] WEI Y, Razeghi M, Brown G J, et al. Modeling type-Ⅱ InAs/GaSb superlattices using empirical tight-binding method: new aspects[C]//Quantum Sensing and Nanophotonic Devices, International Society for Optics and Photonics, 2004, 5359: 301-309.
    [23] Rogalski A. New material systems for third generation infrared detectors[C]//Ninth International Conference on Correlation Optics, International Society for Optics and Photonics, 2009, 7388: 73880J.
    [24] Tobin S P, Hutchins M A, Norton P W. Composition and thickness control of thin LPE HgCdTe layers using x-ray diffraction[J]. Journal of Electronic Materials, 2000, 29(6): 781-791. doi:  10.1007/s11664-000-0225-y
    [25] Grein C H, Young P M, Flatte M E, et al. Long wavelength InAs/InGaSb infrared detectors: optimization of carrier lifetimes[J]. Journal of Applied Physics, 1995, 78(12): 7143-7152. doi:  10.1063/1.360422
    [26] Rodriguez J B, Christol P, Cerutti L, et al. MBE growth and characterization of type-Ⅱ InAs/GaSb superlattices for mid-infrared detection[J]. Journal of Crystal Growth, 2005, 274(1): 6-13. http://www.sciencedirect.com/science/article/pii/S0022024804012163
    [27] Fuchs F, Weimer U, Pletschen W, et al. High performance InAs/Ga1-xInxSb superlattice infrared photodiodes[J]. Applied physics letters, 1997, 71(22): 3251-3253. doi:  10.1063/1.120551
    [28] 王国伟. 中长波InAs/GaSbⅡ类超晶格材料与红外探测器[D]. 北京: 中国科学院研究生院, 2012.

    WANG Guowei. Mid-wavelength and Long-wavelength InAs/GaSb Type-Ⅱ Superlattices Material and Infrared Photodiodes[D]. Beijing: Institute of Semiconductors Chinese Academy of Sciences Graduate School of the Chinese Academy of Sciences, 2012.
    [29] Yano M, Yokose H, Iwai Y, et al. Surface-reaction of Ⅲ-Ⅴ compound semiconductors irradiated by As and Sb molecular-beams[J]. J. Cryst Growth, 1991, 111(1-4): 609. doi:  10.1016/0022-0248(91)91049-G
    [30] Twigg M E, Bennett B R, Thibado P M, et al. Interfacial disorder in InAs/GaSb superlattices[J]. Philosophical Magazine A, 1998, 77(1): 7-30. doi:  10.1080/13642819808206380
    [31] Jackson E M, Boishin G I, Aifer E H, et al. Arsenic cross-contamination in GaSb/InAs superlattices[J]. Journal of Crystal Growth, 2004, 270(3-4): 301-308. doi:  10.1016/j.jcrysgro.2004.06.033
    [32] Chow D H, Miles R H, Hunter A T. Effects of interface Stoichiometry on the structural and electronic-properties of Ga1-xInxSb/InAs superlattices[J]. Journal of Vacuum Science & Technology B, 1992, 10(2): 888-91. doi:  10.1116/1.586144
    [33] WANG M W, Collins D A, McGill T C, et al. Ray photoelectron spectroscopy investigation of the mixed anion GaSb/InAs heterointerface[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1993, 11(4): 1418-22. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4962644
    [34] Bennett B R, Shanabrook B V, Wagner R J, et al. Interface composition control in InAs/GaSb superlattices[J]. Solid-state Electronics, 1994, 37(4-6): 733-737. doi:  10.1016/0038-1101(94)90288-7
    [35] Chow D H, Miles R H, Hunter A T, et al. Effects of interface stoichiometry on the structural and electronic properties of Ga1−xInxSb/InAs superlattices[J]. Journal of Vacuum Science & Technology B, 1992, 10(2): 888-891. doi:  10.1116/1.586144
    [36] Omaggio J P, Meyer J R, Wagner R J, et al. Determination of band gap and effective masses in InAs/GaInSb Superlattices[J]. Appl. Phys. Lett. 1992, 61(2): 207-209. doi:  10.1063/1.108219
    [37] Youngdale E R, Meyer J R, Hoffman C A, et al. Recombination lifetime in InAs-GaInSb superlattices[J]. J. Vac. Sci. Technol. B, 1994, 12(2): 1129-1135. doi:  10.1116/1.587064
    [38] Thibado P M, Bennett B R, Twigg M E, et al. Origins of interfacial disorder in GaSb/InAs superlattices[J]. Applied Physics Letters, 1995, 67(24): 3578-3580. doi:  10.1063/1.115323
    [39] Tahraoui A, Tomasini P, Lassabatere L, et al. Growth and optimization of InAs/GaSb and GaSb/InAs interfaces[J]. Applied Surface Science, 2000, 162: 425-429. http://www.sciencedirect.com/science/article/pii/S0169433200002270
    [40] Schmitz J, Wagner J, Fuchs F, et al. Optical and structural investigations of intermixing reactions at the interfaces of InAs/AlSb and InAs/GaSb quantum wells grown by molecularbeam epitaxy[J]. Journal of Crystal Growth, 1995, 150(1): 858-862. http://www.sciencedirect.com/science/article/pii/002202489580061G
    [41] Booker G R, Klipstein P C, Lakrimi M, et al. Growth of InAs/GaSb strained layer superlattices Ⅱ[J]. Journal of Crystal Growth, 1995, 146(1-4): 495-502. doi:  10.1016/0022-0248(94)00536-2
    [42] Daly M S, Symons D M, Lakrimi M, et al. Interface composition dependence of the band offset in InAs/GaSb[J]. Semiconductor Science and Technology, 1996, 11(5): 823-6. doi:  10.1088/0268-1242/11/5/001
    [43] Young M H, Chow D H, Hunter A T, et al. Recent advances in Ga1−xInxSb/InAs superlattice IR detector materials[J]. Applied Surface Science, 1998, 123-124: 395-399. doi:  10.1016/S0169-4332(97)00490-X
    [44] Steinshnider J, Weimer M, Kaspi R, et al. Visualizing interfacial structure at non-common-atom heterojunctions with cross-sectional scanning tunneling microscopy[J]. Physical Review Letters, 2000, 85(14): 2953-2956. doi:  10.1103/PhysRevLett.85.2953
    [45] Steinshnider J, Harper J, Weimer M, et al. Origin of antimony segregation in GaInSb/InAs strained-layer superlattices[J]. Physical Review Letters, 2000, 85(21): 4562-4565. doi:  10.1103/PhysRevLett.85.4562
    [46] Feenstra R M, Collins D A, Mcgill T C, et al. Scanning tunneling microscopy of InAs/GaSb superlattices with various growth conditions[J]. Superlattices and Microstructures, 1994, 15(2): 215-220. doi:  10.1006/spmi.1994.1043
    [47] Nosho B Z, Bennett B R, Whitman L J, et al. Effects of As2 versus As4 on InAs/GaSb heterostructures: As-for-Sb exchange and film stability[J]. Journal of Vacuum Science & Technology B, 2001, 19(4): 1626-1630. doi:  10.1116/1.1386377
    [48] Nosho B Z, Barvosacarter W, Yang M J, et al. Interpreting interfacial structure in cross-sectional STM images of Ⅲ–V semiconductor heterostructures[J]. Surface Science, 2000, 465(3): 361-371. doi:  10.1016/S0039-6028(00)00732-9
    [49] Plis E, Khoshakhlagh A, Myers S, et al. Molecular beam epitaxy growth and characterization of type-Ⅱ InAs/GaSb strained layer superlattices for long-wave infrared detection[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010, 28(3): C3G13 -C3G18. doi:  10.1116/1.3276429
    [50] WEI Y J, Razeghi M. Modeling of type-Ⅱ InAs/GaSb superlattices using an empirical tight-binding method and interface engineering[J]. Physical Review B, 2004, 69(8): 085316. doi:  10.1103/PhysRevB.69.085316
    [51] Szmulowicz F, Haugan H J, Brown G J, et al. Interfaces as design tools for short-period InAs/GaSb type-Ⅱ superlattices for mid-infrared detectors[J]. Opto-Electronics Review, 2006, 14(1): 71-7. doi:  10.1117/12.622219
    [52] Luna E, Satpati B, Rodriguez J B, et al. Interfacial intermixing in InAs/GaSb short-period-superlattices grown by molecular beam epitaxy[J]. Appl. Phys. Lett. , 2010, 96(2): 021904. doi:  10.1063/1.3291666
    [53] Matthews J W, Blakeslee A E. Defects in epitaxial multilayers: I. Misfit dislocations[J]. Journal of Crystal Growth, 1974, 27: 118-125. http://www.sciencedirect.com/science/article/pii/S0022024874800552
    [54] Fritz I J, Picraux S T, Dawson L R, et al. Dependence of critical layer thickness on strain for InxGa1−xAs/GaAs strained‐layer superlattices[J]. Applied Physics Letters, 1985, 46(10): 967-969. doi:  10.1063/1.95783
    [55] Razeghi M, WEI Y, GIN A, et al. High performance type Ⅱ InAs/GaSb superlattices for mid, long, and very long wavelength infrared focal plane arrays[J]. Proceedings of SPIE, 2005, 5783: 86-97. doi:  10.1117/12.605291
    [56] WEI Y, Hood A, Yau H, et al. High-performance type-Ⅱ InAs/GaSb superlattice photodiodes with cutoff wavelength around 7 μm[J]. Applied Physics Letters, 2005, 86(9): 091109. doi:  10.1063/1.1879113
    [57] Haugan H J, Szmulowicz F, Mahalingam K, et al. Short-period InAs/GaSb type-Ⅱ superlattices for mid-infrared detectors[J]. Applied Physics Letters, 2005, 87(26): 261106. doi:  10.1063/1.2150269
    [58] ZHANG X, Ryou J, Dupuis R D, et al. Improved surface and structural properties of InAs∕GaSb superlattices on (001) GaSb substrate by introducing an InAsSb layer at interfaces[J]. Applied Physics Letters, 2007, 90(13): 131110. doi:  10.1063/1.2717524
    [59] Sullivan G J, Ikhlassi A, Bergman J, et al. Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2005, 23(3): 1144-1148. doi:  10.1116/1.1928238
    [60] Waterman J R, Shanabrook B V, Wagner R J, et al. The effect of interface bond type on the structural and optical properties of GaSb/InAs superlattices[J]. Semiconductor Science and Technology, 1993, 8(1S): S106. doi:  10.1088/0268-1242/8/1S/024
    [61] XIE Q, Van Nostrand J E, Brown J L, et al. Arsenic for antimony exchange on GaSb, its impacts on surface morphology, and interface structure[J]. J. Appl. Phys. , 1999, 86(1): 329-37. doi:  10.1063/1.370733
    [62] Khoshakhlagh A, Plis E, Myers S, et al. Optimization of InAs/GaSb type-Ⅱ superlattice interfaces for long-wave (~8 μm) infrared detection[J]. Journal of Crystal Growth, 2009, 311(7): 1901-1904. doi:  10.1016/j.jcrysgro.2008.11.027
    [63] ZHONG M, Steinshnider J, Weimer M, et al. Combined x-ray diffraction/scanning tunneling microscopy study of segregation and interfacial bonding in type-Ⅱ heterostructures[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004, 22(3): 1593-1597. doi:  10.1116/1.1699341
    [64] Plis E, Annamalai S, Posani K T, et al. Midwave infrared type-Ⅱ InAs/GaSb superlattice detectors with mixed interfaces[J]. J. Appl. Phys., 2006, 100(1): 4.
    [65] Horikoshi Y, Kawashima M, Yamaguchi H. Migration-enhanced epitaxy of GaAs and AlGaAs[J]. Japanese Journal of Applied Physics, 1988, 27(part 1): 169-179. doi:  10.1143/JJAP.27.169
    [66] Gadaleta C, Scamarcio G, Fuchs F, et al. Influence of the interface bond type on the far-infrared reflectivity of InAs/GaSb superlattices[J]. Journal of Applied Physics, 1995, 78(9): 5642-5644. doi:  10.1063/1.359689
    [67] Jasik A, Sankowska I, Pierścinska D, et al. Blueshift of bandgap energy and reduction of non-radiative defect density due to precise control of InAs-on-GaSb interface in type-Ⅱ InAs/GaSb superlattice[J]. Journal of Applied Physics, 2011, 110(12): 123103. doi:  10.1063/1.3671024
    [68] 徐志成. InAs/GaSb Ⅱ类超晶格探测器结构MBE生长研究[D]. 北京: 中国科学院研究生院, 2014.

    XU Zhicheng. Study on the Molecular Beam Epitaxy Growth of InAs/GaSb type Ⅱ Superlattice Infrared Detection Structure[D]. Beijing: Institute of Semiconductors Chinese Academy of Sciences Graduate School of the Chinese Academy of Sciences, 2014.
    [69] Guo Jie, Sun Wei-Guo, Peng Zhen-Yu, et al. Interfaces in InAs/GaSb superlattices grown by molecular beam epitaxy[J]. Chinese Physics Letters, 2009, 26(4): 047802. doi:  10.1088/0256-307X/26/4/047802
    [70] 周志强. InAs/GaSb超晶格及量子点材料生长研究[D]. 北京: 中国科学院研究生院, 2009.

    ZHOU Zhiqiang. Study on the Growth of InAs/GaSb Superlattices and Quantum Dots[D]. Beijing: Institute of Semiconductors Chinese Academy of Sciences Graduate School of the Chinese Academy of Sciences, 2009.
    [71] ZHANG Y, MA W, CAO Y, et al. Long wavelength infrared InAs/GaSb superlattice photodetectors with InSb-like and mixed interfaces[J]. IEEE Journal of Quantum Electronics, 2011, 47(12): 1475-1479. doi:  10.1109/JQE.2011.2168947
    [72] WEI Y, MA W, ZHANG Y, et al. High structural quality of type Ⅱ InAs/GaSb superlattices for very long wavelength infrared detection by interface control[J]. IEEE Journal of Quantum Electronics, 2012, 48(4): 512-515. doi:  10.1109/JQE.2012.2186955
    [73] Twigg M E, Bennett B R, Shanabrook B V, et al. Interfacial roughness in InAs/GaSb superlattices[J]. Applied Physics Letters, 1994, 64(25): 3476-3478. doi:  10.1063/1.111245
    [74] 徐庆庆, 陈建新, 周易, 等. InAs/GaSb超晶格中波焦平面材料的分子束外延技术[J]. 红外与毫米波学报, 2011, 30(5): 406-408. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201105005.htm

    XU Qingqing, CHEN Jianxin, ZHOU Yi, et al. Mid-wavelength infrared InAs/GaSb superlattice grown by molecular beam epitaxy[J]. Journal of Infrared and Millimeter Waves, 2011, 30(5): 406~408. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201105005.htm
    [75] 周易, 陈建新, 徐庆庆, 等. 长波InAs/GaSb Ⅱ类超晶格红外探测器[J]. 红外与毫米波学报, 2013, 32(3): 210-213. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201303001.htm

    ZHOU Yi, CHEN Jianxin, XU Qingqing, et al. Long wavelength infrared detector based on type-Ⅱ InAs/GaSb superlattice[J]. Journal of Infrared and Millimeter Waves, 2013, 32(3): 210-213. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201303001.htm
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  103
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-19
  • 修回日期:  2021-03-06
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回

    关于“登录密码错误”的启事

    目前由于期刊网站(hwjs.nvir.cn)系统升级,部分作者和审稿人的密码无法继续使用,如果您遇到了这个问题,请与编辑部联系(电话 0871-65105248, 邮箱 irtek@china.com),重置密码。由此带来的麻烦,谨致歉意!

    《红外技术》编辑部

    2021-06-16