Abstract:
This article systematically introduces interface control methods for the MBE growth of InAs/GaSb type-Ⅱ superlattice materials, including the interrupted growth epitaxy method, migration-enhanced epitaxy, V group element soak method, and bulk material growth method. The short-wavelength (mid-wavelength) InAs/GaSb superlattice material interface adopts a mixed-like interface, and the control method is mainly the interrupted growth epitaxy method, the long-wavelength (very long-wavelength) superlattice material interface adopts the InSb-like interface, and the control method adopts the migration-enhanced epitaxy (MEE) or Sb soak method combined with bulk material growth. The basis for selecting the interface type of InAs/GaSb superlattice material is discussed and analyzed, and the specific implementation theory of interface control is briefly described, along with the selection of interface types and control methods of superlattice materials in different infrared detection wavelength bands by related research institutions. To effectively improve the stress compensation effect of the interface layer, the interface structure epitaxial growth process design, that is, the experimental design of different shutter sequences based on the interface control method, was used. This is of great significance for the optimization of the crystal quality and device performance of long-wave, very long-wave, and two-color (even multi-color) superlattice materials.