Abstract:
Aiming at the problems of incomplete contour information, missing edge and texture details in infrared and visible image fusion, A Improved Simplified Pulse Coupled Neural Network (MSPCNN) and Fuzzy C-mean (FCM) image fusion algorithm is proposed. First, infrared and visible images were decomposed into high and low frequency sub-bands using the Non-Subsampled Shearlet Transform (NSST).Then MSPCNN is used to fuse the decomposed high frequency subband, and a Gaussian distribution weight matrix is used for processing to enhance the detail information and contrast. Then, the obtained low-frequency sub-band images were extracted by using FCM clustering algorithm, and the approximate threshold of clustering center was set to simplify the process to achieve background classification extraction.Finally, the inverse transformation of NSST is carried out to complete the infrared and visible image fusion process.Through objective evaluation index calculation, compared with other algorithms of the same type, the method proposed in this paper has been improved in terms of average gradient, standard deviation, average similarity and other reference indexes. As the running speed of simplified algorithm of model parameters has been improved, the timeliness of the algorithm in this paper has been improved compared with other algorithms, and the algorithm is more suitable for complex scenarios.