Influence of Temperature Measuring Position at the Cold End on Cryocooler Performance
-
摘要:
机械制冷机是提供红外载荷工作所需低温环境的主要设备,在运行过程中,制冷机冷腔温度会低于测温二极管处的温度,该温差与二极管测温位置及其造成的传热热阻有关。本文先从理论上分析了二极管测温位置及其造成的传热热阻差异对冷腔实际温度的影响,并进行了实验验证,再进一步通过理论推导与实验测试研究了制冷机冷腔的实际温度对制冷机性能表现的影响,指出了在使用模拟杜瓦进行制冷机性能测试的过程中,应注意以下几个问题:①测温二极管与制冷机冷腔存在固有温差。温差越大,制冷机冷腔的实际温度越低,制冷机与杜瓦的性能总体表现越差。②测温二极管与制冷机冷腔的温差大小受杜瓦组件热阻的影响。热阻越大,该温差越大,制冷机冷腔实际温度越低。③测温二极管焊接位置会影响杜瓦组件的热阻大小,从而影响制冷机冷腔的实际温度。测试杜瓦设计时应充分考虑二极管测温位置的设置,避免模拟失真影响对制冷机性能的评估。
Abstract:A mechanical cryocooler is the main equipment used to provide the low-temperature environment required for an infrared detector. The temperature of the cold chamber is lower than that of the IRFPA as measured by the diode. The temperature difference is related to the temperature measurement position of the diode and heat transfer resistance. In this study, the influence of the diode position and difference in the heat transfer resistance on the actual temperature of the cold chamber is theoretically analyzed and experimentally verified. The influence of the actual temperature of the cryocooler cold chamber on its performance is further examined via theoretical derivation and experimental testing. During the testing of the performance of the cryocooler with the Dewar test, the following points should be considered. (1) An inherent temperature difference exists between the position of the diode and the cold chamber of the cryocooler. The greater the temperature difference, the lower the actual temperature of the cold chamber, and the worse the performance of the cryocooler and test Dewar. (2) The temperature difference between the diode and cold chamber of the cryocooler is affected by the thermal resistance of the Dewar module. The greater the thermal resistance, the greater the temperature difference and the lower the actual temperature of the cryocooler chamber. (3) The position of the diode affects the thermal resistance between the diode and cold chamber, thus affecting the temperature of the cold chamber of the cryocooler. The position of the diode should be fully considered in the design of the Dewar test to avoid the influence of simulation distortion on the evaluation of the cryocooler performance.
-
Keywords:
- infrared detector /
- cryocooler /
- heat transfer resistance of the IDDA /
- diode
-
-
表 1 制冷机冷腔与测温二极管的温差测试结果
Table 1 Test results of temperature difference between cold chamber and diode
Number of sample 1# 2# 3# 4# 5# Temperature difference of A 1.76 1.60 1.81 1.81 2.19 Temperature difference of B 1.88 1.63 1.94 1.81 2.25 Note:Temperature difference=Temperature of diode–Temperature of cold chamber;
Diode:Calibration accuracy 0.01 mV@50~300 K
Electric Resistance:100 Ω 0.1%@77 K表 2 动态杜瓦各结构件热阻计算
Table 2 Thermal resistance of test Dewar
Thermal conductivity/(W/m·K) Thickness/mm Area/mm2 Thermal resistance/(K/W) Cold platform 13.81 1.50 63.62 1.71 Glue 1 0.89 0.05 78.54 0.72 Heat block 386.00 2.90 201.06 0.04 -
[1] 陈国邦, 汤珂. 小型低温制冷机原理[M]. 北京: 科学出版社, 2010, 127. CHEN Guobang, TANG Ke. Principle of Small Cryogenic Refrigerator[M]. Beijing: Science Press, 2010, 127.
[2] 边绍雄. 小型低温制冷机[M]. 北京: 机械工业出版社, 1983: 72. BIAN Shaoxiong. Small Cryogenic Refrigerator[M]. Beijing: China Machine Press, 1983: 72.
[3] 陶文铨. 传热学[M]. 5版, 北京: 高等教育出版社, 2019. TAO Wenquan. Heat Transfer[M]. 5th ed., Beijing: Higher Education Press, 2019.
[4] Veprik Alex, Shlomovich Baruch, Tuito Avi. Multi-slope, warm-up calorimetry of integrated dewar-detector assemblies[C]//Proceedings of SPIE-The international Society for Optical Engineering, 2015: 9451.
[5] 王镇. 红外焦平面组件低温封装截面热阻研究[D]. 上海: 中国科学院上海技术物理研究所, 2020. WANG Zhen. Research on Interface Thermal Resistance of Cryogenic Packaging for Infrared Focal Plane Assembly[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2020.
[6] 张磊, 王冠, 付志凯. 红外探测器杜瓦的小型化设计方法[J]. 红外, 2020, 41(9): 15-19. ZHANG Lei, WANG Guan, FU Zhikai. North Compact Design Method of Infrared Detector Dewar[J]. Infrared, 2020, 41(9): 15-19.
[7] 徐海峰, 罗高桥, 李泽昊. 红外冷光学用杜瓦静态真空维持及其漏热分析[J]. 低温与超导, 2020, 48(6): 26-42. XU Haifeng, LUO Gaoqiao, LI Zehao. Analysis on the static vacuum maintenance and heat leakage mechnism of the dewar used in infrared cold optical system[J]. Cryogenics & Superconductivity, 2020, 48(6): 26-42.
[8] 张亚平, 杨秀华, 何胤, 等. 高温工作型红外探测器杜瓦漏热分析与测试[J]. 真空, 2019, 56(3): 60-65. ZHANG Yaping, YANG Xiuhua, HE Yin. High-temperature working infrared detector Dewar heat load test technology[J]. Vacuum, 2019, 56(3): 60-65.