微光探测成像系统电路设计与实现

姜婷, 陈伟男, 夏振涛, 胡继宝, 姜守望, 孙永雪, 李太平, 谢永权

姜婷, 陈伟男, 夏振涛, 胡继宝, 姜守望, 孙永雪, 李太平, 谢永权. 微光探测成像系统电路设计与实现[J]. 红外技术, 2022, 44(10): 1045-1051.
引用本文: 姜婷, 陈伟男, 夏振涛, 胡继宝, 姜守望, 孙永雪, 李太平, 谢永权. 微光探测成像系统电路设计与实现[J]. 红外技术, 2022, 44(10): 1045-1051.
JIANG Ting, CHEN Weinan, XIA Zhentao, HU Jibao, JIANG Shouwang, SUN Yongxue, LI Taiping, XIE Yongquan. Design and Development of a Low-Light Detection Imaging System Circuit[J]. Infrared Technology , 2022, 44(10): 1045-1051.
Citation: JIANG Ting, CHEN Weinan, XIA Zhentao, HU Jibao, JIANG Shouwang, SUN Yongxue, LI Taiping, XIE Yongquan. Design and Development of a Low-Light Detection Imaging System Circuit[J]. Infrared Technology , 2022, 44(10): 1045-1051.

微光探测成像系统电路设计与实现

详细信息
    作者简介:

    姜婷(1989-),女,江西上饶人,硕士,主要从事光电成像系统电子学技术方面的研究。E-mail:jiangting_sitp@163.com

  • 中图分类号: TN215

Design and Development of a Low-Light Detection Imaging System Circuit

  • 摘要: 为满足微光遥感卫星领域对微光探测的需求,本文提出了一种基于微光CMOS图像传感器GSENSE2020的成像电路设计。该成像电路通过FPGA实现了对图像传感器的驱动控制以及高速图像数据的接收和传输,通过DC/DC和LDO(low dropout regulator)为图像传感器提供了低噪声供电电源,采用PMIC(power management IC)解决了FPGA上电时序问题,利用DDR3实现高速图像缓存与处理,采用eMMC达到图像数据存储速率与容量的需求,应用FPGA的IP核及原语代替CameraLink接口转换芯片实现CameraLink通信协议,从而完成图像数据直接在CameraLink接口的高速传输。实验结果表明,成像系统电路功能及性能都达到了预期设计目标,系统的输出数据率可达2.4 Gbps,帧频高达25 fps,信噪比达到45.5 dB。
    Abstract: To achieve low-light detection in low-light remote sensing satellites, an imaging circuit is designed based on a low-light complementary metal oxide semiconductor image sensor named GSENSE2020. The imaging circuit facilitates the drive control of the image sensor and the reception and transmission of high-speed image data through a field programmable gate array (FPGA), provides low-noise power supply for the image sensor through DC/DC and low-dropout regulator, and uses a power management integrated circuit to solve the problem of FPGA power-on timing. The circuit also uses DDR3 to perform high-speed image caching and processing and adopts an embedded multimedia card to meet the requirements of image data storage rate and capacity. The intellectual property core and primitives of the FPGA are used instead of a CameraLink interface conversion chip to establish the CameraLink communication protocol. Thus, the circuit can directly transmit image data with high speed to the CarameLink interface. The experimental results show that the circuit's functions and the performance of the imaging system reach the expected design goals. The output data rate of the system reaches 2.4 Gbps, frame rate reaches 25 fps, and signal-to-noise ratio reaches 45.5 dB.
  • 图  1   成像系统电路结构

    Figure  1.   Imaging system circuit structure

    图  2   TPS7A8300设计电路

    Figure  2.   TPS7A8300 design circuit

    图  3   PMIC局部设计电路

    Figure  3.   PMIC partial design circuit diagram

    图  4   MT41K64M16TW设计电路

    Figure  4.   MT41K64M16TW design circuit

    图  5   KLMCG4JENB-B041设计电路

    Figure  5.   KLMCG4JENB-B041 design circuit

    图  6   FPFA的7:1并串转换

    Figure  6.   FPGA 7:1 parallel-serial converter module

    图  7   系统硬件电路实物

    Figure  7.   System hardware circuit physical diagram

    图  8   上电时序图

    Figure  8.   Power-on sequence diagram

    图  9   电源纹波

    Figure  9.   Power ripple

    图  10   图像帧频

    Figure  10.   Image frame rate display

    图  11   实景成像

    Figure  11.   Real scene imaging

    表  1   Base模式的端口分配

    Table  1   Base mode port allocation

    Input signal name 28-bit pin name Input signal name 28-bit pin name
    Strobe TxClk Out/RxClk In Port B2 TX/RX 9
    LVAL TX/RX 24 Port B3 TX/RX12
    FVAL TX/RX 25 Port B4 TX/RX 13
    DVAL TX/RX 26 Port B5 TX/RX 14
    Spare TX/RX 23 Port B6 TX/RX 10
    Port A0 TX/RX 0 Port B7 TX/RX 11
    Port A1 TX/RX 1 Port C0 TX/RX 15
    Port A2 TX/RX 2 PortC1 TX/RX 18
    Port A3 TX/RX 3 Port C2 TX/RX 19
    Port A4 TX/RX 4 Port C3 TX/RX 20
    Port A5 TX/RX 6 Port C4 TX/RX 21
    Port A6 TX/RX 27 Port C5 TX/RX 22
    Port A7 TX/RX 5 Port C6 TX/RX 16
    Port B0 TX/RX 7 Port C7 TX/RX 17
    Port B1 TX/RX 8 - -
    下载: 导出CSV
  • [1] 郭晖, 向世明, 田民强. 微光夜视技术发展动态评述[J]. 红外技术, 2013, 35(2): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201302000.htm

    GUO Hui, XIANG Shiming, TIAN Minqiang. A review of the development of low-light night vision technology[J]. Infrared Technology, 2013, 35(2): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201302000.htm

    [2] 李德仁, 李熙. 夜光遥感技术在评估经济社会发展中的应用[J]. 宏观质量研究, 2015, 3(4): 1-8. DOI: 10.3969/j.issn.2095-607X.2015.04.001

    LI D, LI X. Application of night-time light remote sensing in evaluating of socioeconomic development [J]. Journal of Macro-Quality Research, 2015, 3(4): 1-8. DOI: 10.3969/j.issn.2095-607X.2015.04.001

    [3] 李翔. 基于夜光遥感数据的中国2005-2015年居民收入时空变化与驱动力研究[D]. 南京: 南京大学, 2018.

    LI X. Study on Spatiotemporal Change and Driving Force of Resident Income of China from 2005 to 2015 Based on Night Light Remote Sensing Data [D]. Nanjing: Nanjing University, 2018.

    [4] 李立金, 李浩洋, 徐彭梅, 等. 晨昏轨道微光相机成像策略研究及仿真验证[J]. 航天返回与遥感, 2017, 38(5): 29-34. DOI: 10.3969/j.issn.1009-8518.2017.05.004

    LI Lijin, LI Haoyang, XU Pengmei, et al. Simulation and verification of imaging strategy for low-light-level camera on dawn-dusk orbit[J]. Spacecraft Recovery & Remote Sensing, 2017, 38(5): 29-34. DOI: 10.3969/j.issn.1009-8518.2017.05.004

    [5] 李贝贝, 韩冰, 田甜, 等. 吉林一号视频卫星应用现状与未来发展[J]. 卫星应用, 2018(3): 23-27. DOI: 10.3969/j.issn.1674-9030.2018.03.007

    LI Beibei, HAN Bing, TIAN Tian, et al. Application status and future development of JL-1 video satellite[J]. Satellite Application, 2018(3): 23-27. DOI: 10.3969/j.issn.1674-9030.2018.03.007

    [6] 郭晗. 珞珈一号科学试验卫星[J]. 卫星应用, 2018(7): 70. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYG201807021.htm

    GUO Han. LJ-1 scientific test satellite[J]. Satellite Application, 2018(7): 70. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYG201807021.htm

    [7] 祝庆贺, 熊文卓, 贺小军. 基于FPGA的星载成像系统设计[J]. 现代电子技术, 2017, 40(15): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201715019.htm

    ZHU Qinghe, XIONG Wenzhuo, HE Xiaojun. Design of satellite⁃borne imaging system based on FPGA[J]. Modern Electronics Technique, 2017, 40(15): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201715019.htm

    [8] 梁超, 马天翔. 基于FPGA的CMOS成像电路设计[J]. 国外电子测量技术, 2016, 35(4): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GWCL201604017.htm

    LIANG Chao, MA Tianxiang. Design of CMOS imaging circuit based on FPGA[J]. Foreign Electronic Measurement Technology, 2016, 35(4): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GWCL201604017.htm

    [9] 郑扬帆, 尹达一, 李清灵, 等. 基于低噪声CMOS图像传感器的成像电路设计与实现[J]. 电子设计工程, 2018, 26(4): 188-193. DOI: 10.3969/j.issn.1674-6236.2018.04.041

    ZHENG Yangfan, YIN Dayi, LI Qingling, et al. The design and implementation of imaging circuit based on low⁃noise CMOS image sensor[J]. Electronic Design Engineering, 2018, 26(4): 188-193. DOI: 10.3969/j.issn.1674-6236.2018.04.041

    [10] 单彦虎, 张晋顼, 任勇峰, 等. 基于FPGA的CameraLink图像数据接口设计[J]. 仪表技术与传感器, 2020(9): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS202009011.htm

    SHAN Yanhu, ZHANG Jinxu, REN Yongfeng, et al. Design of CamereLink image data interface based on FPGA[J]. Instrument Technique and Sensor, 2020(9): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS202009011.htm

    [11] 隋延林, 何斌, 张立国, 等. 基于FPGA的超高速CameraLink图像传输[J]. 吉林大学学报: 工学版, 2017, 47(5): 1634-1643. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201705041.htm

    SUI Yanlin, HE Bin, ZHANG Liguo, et al. Ultra-high speed CamereLink image transmission based on FPGA[J]. Journal of Jilin University: Engineering and Technology Edition, 2017, 47(5): 1634-1643. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201705041.htm

    [12] 宁永慧, 刘辉, 赵庆磊, 等. 大面阵高帧频CMOS成像电子学系统设计[J]. 光学精密工程, 2019, 27(5): 1167-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201905020.htm

    NING Yonghui, LIU Hui, ZHAO Qinglei, et al. High-frame frequency imaging system of large area CMOS image sensor[J]. Optics and Precision Engineering, 2019, 27(5): 1167-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201905020.htm

  • 期刊类型引用(1)

    1. 朱强,周维虎,陈晓梅,石俊凯,李冠楠. 高速实时近红外弱信号检测系统. 光学精密工程. 2022(24): 3116-3127 . 百度学术

    其他类型引用(2)

图(11)  /  表(1)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  78
  • PDF下载量:  71
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-03-09
  • 修回日期:  2021-03-31
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日