基于深度图像分解的红外与可见光图像融合

Infrared and Visible Image Fusion Based on Deep Image Decomposition

  • 摘要: 红外与可见光图像融合是一种图像增强技术,其目标是为了获得保留有源图像优势的融合图像。对此本文提出了一种基于深度图像分解的红外与可见光图像融合方法。首先源图像经过编码器分解为背景特征图和细节特征图;同时编码器中引入显著性特征提取模块,突出源图像的边缘和纹理特征; 随后通过解码器获得融合图像。在训练过程中对可见光图像采用梯度系数惩罚进行正则化重建去保证纹理一致性;对图像分解,图像重建分别设计损失函数,以缩小背景特征图之间的差异,同时放大细节特征图之间的差异。实验结果表明,该方法可生成具有丰富细节和高亮目标的融合图像,在TNO和FLIR公开数据集上的主客观评价上优于其他对比方法。

     

    Abstract: Infrared and visible light image fusion is an enhancement technique designed to create a fused image that retains the advantages of the source image. In this study, a depth image decomposition-based infrared and visible image fusion method is proposed. First, the source image is decomposed into the background feature map and detail feature map by the encoder; simultaneously, the saliency feature extraction module is introduced in the encoder to highlight the edge and texture features of the source image; subsequently, the fused image is obtained by the decoder. In the training process, a gradient coefficient penalty was applied to the visible image for regularized reconstruction to ensure texture consistency, and a loss function was designed for image decomposition and reconstruction to reduce the differences between the background feature maps and amplify the differences between the detail feature maps. The experimental results show that the method can generate fused images with rich details and bright targets. In addition, this method outperforms other comparative methods in terms of subjective and objective evaluations of the TNO and FLIR public datasets.

     

/

返回文章
返回