基于KL散度与通道选择的热红外目标跟踪算法

Thermal Infrared Target Tracking Algorithm Based on KL Divergence and Channel Selection

  • 摘要: 为了解决单一跟踪器无法有效应对复杂背景及目标外观的显著变化,对于热红外目标跟踪准确度不高的问题,基于全卷积孪生网络提出了一种多响应图集成的跟踪算法用于热红外跟踪。首先,使用预训练的卷积神经网络来提取热红外目标的多个卷积层的特征并进行通道选择,在此基础上分别构建3个对应的跟踪器,每个跟踪器独立执行跟踪并返回一个响应图。然后,利用Kullback–Leibler(KL)散度对多个响应图进行优化集成,得到一个更强的响应图。最后利用集成后的响应图来确定目标位置。为了评估所提算法的性能,在当前最全面的热红外跟踪基准LSOTB-TIR(Large-Scale Thermal Infrared Object Tracking Benchmark)上进行了实验。实验结果表明,所提算法能够适应复杂多样的红外跟踪场景,综合性能超过了现有的红外跟踪算法。

     

    Abstract: To solve the problem that a single tracker cannot effectively deal with the complex background and significant changes in target appearance, leading to the problem of low accuracy of thermal infrared target tracking, a tracking algorithm based on a fully-convolutional Siamese network is proposed for thermal infrared tracking. First, a pre-trained convolution neural network is used to extract the features of multiple convolution layers of thermal infrared targets and select channels. On this basis, three corresponding trackers are constructed, and each tracker performs tracking independently and returns a response map. Then, the Kullback Leibler (KL) divergence is used to optimize and integrate multiple response maps to obtain a stronger response map. Finally, the integrated response map is used to determine the target location. To evaluate the performance of the proposed algorithm, experiments were conducted using the most comprehensive thermal infrared tracking benchmark, LSOTB-TIR. The experimental results show that the proposed algorithm can adapt to complex and diverse infrared tracking scenes, and its comprehensive performance is better than that of existing infrared tracking algorithms.

     

/

返回文章
返回