材料形貌对碲镉汞红外焦平面器件性能的影响

陈书真, 祁娇娇, 王丹, 程杰, 高华, 何斌

陈书真, 祁娇娇, 王丹, 程杰, 高华, 何斌. 材料形貌对碲镉汞红外焦平面器件性能的影响[J]. 红外技术, 2022, 44(10): 1033-1040.
引用本文: 陈书真, 祁娇娇, 王丹, 程杰, 高华, 何斌. 材料形貌对碲镉汞红外焦平面器件性能的影响[J]. 红外技术, 2022, 44(10): 1033-1040.
CHEN Shuzhen, QI Jiaojiao, WANG Dan, CHENG Jie, GAO Hua, HE Bin. Effect of Material Morphology on the Performance of HgCdTe Infrared Focal Plane Devices[J]. Infrared Technology , 2022, 44(10): 1033-1040.
Citation: CHEN Shuzhen, QI Jiaojiao, WANG Dan, CHENG Jie, GAO Hua, HE Bin. Effect of Material Morphology on the Performance of HgCdTe Infrared Focal Plane Devices[J]. Infrared Technology , 2022, 44(10): 1033-1040.

材料形貌对碲镉汞红外焦平面器件性能的影响

详细信息
    作者简介:

    陈书真(1994-)女,硕士,助理工程师,主要研究方向:碲镉汞红外探测器芯片制备。E-mail:18801392275@139.com

  • 中图分类号: TN213

Effect of Material Morphology on the Performance of HgCdTe Infrared Focal Plane Devices

  • 摘要: 碲镉汞材料表面的粗糙度对钝化膜层的质量、接触孔的光刻与刻蚀都有着显著的影响,研究其表面的粗糙度对器件性能的影响具有重要意义。在本文中,我们分别研究了碲镉汞的小平面形貌和台阶形貌对器件性能的影响,以及不同表面粗糙度的碲镉汞材料对器件制备工艺和最终性能的影响。研究表明,随着材料表面粗糙度的增加,钝化层的质量下降,接触孔的均匀性下降,且接触孔的形貌变差,I-V性能下降,最终导致器件的响应非均匀性增加,盲元数增加。
    Abstract: The roughness of material surfaces has a significant impact on the quality of passivation films and the lithography and etching of contact holes. Therefore, studying the influence of the surface roughness of materials on the performance of HgCdTe infrared focal plane devices' is important. In this study, we separately evaluated the influence of the facet morphology and step morphology of mercury cadmium telluride on the performance of the device and the influence of mercury cadmium telluride materials with different surface roughness on the preparation process and final performance of the device. Studies have shown that as the surface roughness of the materials increases, the quality of the passivation layers decreases, uniformity of the contact holes decreases, morphology of the contact holes deteriorates, and I-V performance is degraded, eventually leading to an increase in the non-uniformity of the device responses and an increase in the blind pixel rate.
  • 由于飞机在飞行时,光学载荷也在随之运动,当飞机突然加速或者减速时,由于惯性的作用载荷会受到加速度等约束的冲击,对设备或结构会产生破坏性的影响,特别是超过设备的允许范围,会减少设备的使用寿命。因此,对设备引入隔振系统,减少各种约束对设备的冲击,阻断振动的路径。特别是相机组件,如果对振动敏感,会影响相机的成像质量,造成图像模糊、扭曲等[1]

    在众多减震器中,钢丝绳减震器以其非线性的特性而闻名,其具有低固有频率、良好的干摩擦特性,大变形刚度软化,宽频隔振,耐高低温,可以承受剪切、横滚和拉压载荷,兼顾了弹性支撑元件隔振,并且成本低,安装方便[2],广泛应用于车载、航空航天、舰载等领域[3-4]

    目前,常用的减震器为橡胶减震器,但其容易受温度、环境和化学溶剂的影响,导致减震器性能降低。橡胶老化,容易松弛,使用寿命短。针对橡胶减震器的不足,国内很多学者对钢丝绳减震器做出诸多研究,如张春晖等人[5]设计一种带球形导向结构的钢丝绳减震器,解决横滚和剪切时的受力不均。王平[6]分析一种带钢丝绳减震器的风机系统,利用有限元来研究风机的抗震性能。

    本文设计一种适用于大负载(一种相对的含义,光学负载一般都是100 kg以内,本文应用的光学负载为120 kg)结构的钢丝绳减震器,通过钢丝绳的伸缩变化减少内部结构组件所承受的缓冲力,增加结构的使用寿命。

    根据振动力学表述,钢丝绳减振系统的动力学模型的一般表达式为:

    $$\boldsymbol{m} \ddot{x}+\boldsymbol{c} \dot{x}+\boldsymbol{k} x=f(t)$$ (1)

    式中:x(0)=x0(0)=0为初始位移和初始加速度;x是系统的输入,分别表示为加速度、速度、位移;mck是系统的参数,分别表示系统的质量矩阵、阻尼矩阵以及刚度矩阵;f(t)表示系统的外激励,是系统的输入量。

    系统的输入不同,研究内容会有所差别。当f(t)=0时,系统做自由振动,其仅靠本身的弹性恢复力“自由地”振动,其振动的特性仅决定于系统本身的物理特性(质量和刚度);当f(t)≠0时,系统做受迫振动或自激振动。所谓的受迫振动就是指系统受到外接持续的激励作用从而“被迫地”进行振动,其振动的特性不仅和本身物理特性有关,还受到激励特性影响。在工程中,大部分的运动都属于受迫振动。所谓的自激振动,是指系统自身控制的激励作用下发生的振动。本文主要考虑在自然情况下的实际运动。

    这里以单自由度系统为例,对钢丝绳减震器分析,其结构原理如图 1所示。

    图  1  单自由度系统钢丝绳减震器的结构简化模型
    Figure  1.  Simplified structural model of single-degree-of-freedom system wire rope shock absorber

    对方程(1)化简为无量纲方程,即:

    $$\ddot{x}+\frac{\boldsymbol{c}}{\boldsymbol{m}} \dot{x}+\frac{\boldsymbol{k}}{\boldsymbol{m}} x=\frac{f(t)}{\boldsymbol{m}}$$ (2)

    式中:σc/(2m),表示衰减系数;$f=\sqrt{\boldsymbol k / \boldsymbol m} / 2 \pi$,表示圆频率,F(t)=f(t)/m,表示激励函数。

    钢丝绳的阻尼我们不过多考虑,因为钢丝绳本身就具有良好的阻尼特性,通过调整钢丝绳的圈数、压板宽度、弯曲半径等多方面因数,来控制钢丝绳刚度k,从而设计一种适用于大负载的钢丝绳减震器,并让其圆频率f符合挂载的频率范围。

    传统的钢丝绳减震器只考虑其承重的能力,而没有从其结构形式、适用范围等方面考虑,如图 2所示。而本文提出一种的新型钢丝绳减震器,结构合理规范,适用于一类大负载光学载荷,且采用向心(设备的质心)的结构形式,这样有利于彼此之间解耦,避免出现应力集中。

    图  2  传统的钢丝绳减震器
    Figure  2.  Traditional wireline shock absorbers

    基于此,根据负载需求,设计一种新的钢丝绳减震器,它由上压板、下压板、向心压板、钢丝绳以及锁扣共5部分组成,结构如图 3所示。钢丝绳采用对称的结构形式贯穿于两对压板之间,利用螺钉将钢丝绳固定,其原理是压缩钢丝绳的变形量,对负载实施减振缓冲效果。

    图  3  钢丝绳减震器的结构模型
    Figure  3.  Structural model of wire rope shock absorber

    钢丝绳减震器主要受钢丝绳的股数、压板宽度、贯穿孔的孔距、钢丝绳的弯曲半径以及加工的误差等多方面误差的影响。这里我们设定压板宽度为10 mm,锁扣长度为7 mm,钢丝绳直径为4 mm,压板孔距为10 mm,钢丝绳的弯曲半径为15 mm(要在钢丝绳的弯曲半径范围内,一般是钢丝绳直径的1.5~2.5倍)。

    利用拉伸试验机对减震器做拉伸试验,从而确定减震器的刚度。分别对直径为4 mm、5 mm、6 mm钢丝绳做3个方向的拉伸(XYZ),结果见图 4所示,从而可以确定3个方向的刚度,见表 1。从图 4中可以得出,无论是XYZ哪个方向,初始阶段曲线斜率(即刚度k)陡然增加,随着拉伸(或压缩)的距离逐渐增加的时候,曲线斜率的增幅逐渐减弱,这符合钢丝绳减震器这一运动状态。且从表 1中的计算结果表明,钢丝绳的3个方向的刚度近似符合Kx: Ky: Kz=1:1:3,与参考文献[7-8]对钢丝绳减震器静态加载试验描述一致,并为钢丝绳的仿真计算提供刚度参数。

    图  4  不同钢丝绳直径的力与位移曲线
    Figure  4.  Force versus displacement curves for different rope diameters
    表  1  不同钢丝绳的直径的刚度系数
    Table  1.  Stiffness coefficient of different wire rope diameters
    Kx Ky Kz
    6 mm 206.2 184.6 952.7
    5 mm 123.7 119.9 399.8
    4 mm 60.1 58.8 185.6
    下载: 导出CSV 
    | 显示表格

    根据给定的钢丝绳参数,加工出实物模型,将其应用到120 kg光学机构负载上,光学负载减振系统如图 5所示,在分析时通常都将负载作为集中质量施加在结构的质心中。减震器一共四组,采用组内对称排列,组外均布排列,且每一个均指向质心,如图 6所示。

    图  5  光学负载减震系统
    Figure  5.  Optical load damping system
    图  6  减震器的均布排列
    Figure  6.  Uniform arrangement of shock absorbers

    利用建模软件UG NX10.0对钢丝绳减震器建模,在不影响结构的条件下适当对模型简化。由于模型结构无明显过薄结构,在有限元网格划分中,为了保证仿真结果的准确性,将升降板以及过渡连接板一并加入到分析模型中,且光学负载质量以集中质量的方式加入模型中(位于质心处),其中减振器的设置采用BUSH单元分析,网格采用3D十节点四面体实体单元进行网格划分[9]。该有限元模型见图 7,结构划分单元数量为506218个,节点数为801704个。

    图  7  减震器系统的有限元模型
    Figure  7.  Finite element model of shock absorber system

    选择减震器和其他结构件的材料时需要考虑承重效果和整体强度。铝合金材料具有良好的加工工艺性,可用车、磨等机械工艺进行加工[10]。此外铝合金材料在轻量化设计方面有着得天独厚的优点,由于升降板体积较大,考虑加工质量、成本等多方面因素,所以选择铝合金作为其主要材料。而减震器和过渡件起着承重的作用,且对材料的抗弯与抗拉性能有着更高的要求。由于不锈钢具有耐腐蚀性能、较高的硬度,因此选择不锈钢作为减震器和过渡件的主要材料。材料属性见表 2所示。

    表  2  材料参数
    Table  2.  Material parameters
    Materials Elastic modulus/GPa Poisson's ratio Density/(kg/m3)
    Aluminium alloy 71 0.33 2770
    Stainless steel 193 0.31 7750
    下载: 导出CSV 
    | 显示表格

    升降板、减震器以及过渡件在实际工作状态下,它们起着承重的作用,所以要考虑自身的重力问题,分析其变形情况及其应力分布情况。

    根据结构的安装形式,在有限元分析时,对升降板底面施加固定约束,将质量点集中加在4个过渡板正中间的底部位置,使其与实际工况边界条件一致。

    在条件约束下,整体结构的变形云图和应力云图如图 8所示,框架的最大变形量3 mm,出现在过渡梁的中间的边缘位置,满足结构承重要求;最大应力为34.3 MPa,位于过渡梁底端与减震器的接触位置,应力值在材料许用应力范围内。

    图  8  带负载的静力学分析结果
    Figure  8.  Static analysis results with load

    模态分析是分析整体结构动力学特性的有效方法,其通过计算分析得到结构的模态参数,包括各阶相应的频率、振型、刚度等参数,对结构优化设计,避开共振。

    对结构分析了前六阶模态,云图见图 9,模态分析结果见表 3。从模态分析可以确定,第三阶振型与实际最为接近,频率为9.81 Hz。根据给定指标,直升机的中转轴转速400转/分,共有4个桨叶,所以其频率为27.3 Hz,其实际振型频率满足光学载荷指标要求,避免共振。

    图  9  带负载的前六阶模态云图
    Figure  9.  First six order modal cloud diagrams with load
    表  3  带负载结构的模态分析结果
    Table  3.  Modal analysis results of loaded structures
    Modal order Natural
    frequency/Hz
    Mode description
    1 4.25 Rotate around X axis
    2 4.25 Second order bending in the XZ plane
    3 9.81 Stretch along the Z axis
    4 35.35 First order bending in XZ plane
    5 37.37 Stretch along Y axis
    6 37.38 Stretch along the X axis
    下载: 导出CSV 
    | 显示表格

    本文设计了一种适用于大负载的钢丝绳减震器,并将相应的组件以及减震器进行有限元建模,对该结构进行了静力学分析和模态分析。分析结果表明,在120 kg负载的情况下,最大的变形量为3 mm,最大应力为34.3 MPa,实际模态的振型频率为9.81 Hz,以上参数都满足指标需求。利用拉伸试验计算刚度为结构组件仿真提供更加真实可靠的依据,同时验证该减震器适用于大负载,为以后设计提供了一定参考价值。

  • 图  1   衬底晶向影响液相外延表面形貌的示意图[1]

    Figure  1.   Schematic diagram of the influence of the crystal orientation of the substrate on the surface morphology of the liquid phase epitaxy[1]

    图  2   碲镉汞焦平面器件的结构示意图

    Figure  2.   Schematic diagram of the structure of the HgCdTe focal plane device

    图  3   样品a、b、c、d、e和f的材料形貌显微照片

    Figure  3.   Photomicrographs of material topography, a, b, c, d, e, and f

    图  4   样品a、b、c、d、e和f接触孔的尺寸与深度的非均匀性

    Figure  4.   Non-uniformity of contact hole size and depth of samples a, b, c, d, e and f

    图  5   样品a、b、c、d、e和f接触孔的SEM形貌图

    Figure  5.   SEM topography of contact hole of samples a, b, c, d, e and f

    图  6   样品a、b、c、d、e和f的I-VR-V曲线

    Figure  6.   I-V and R-V curves of samples a, b, c, d, e and f

    图  7   样品a和f的位错腐蚀图

    Figure  7.   Dislocation corrosion diagram of samples a and f

    图  8   阴影效应和再发射效应机理[17-18]

    Figure  8.   Mechanism diagram of shadow effect and re-emission effect[17-18]

    图  9   样品a、b、c、d、e、f的盲元图

    Figure  9.   Blind pixel of sample a, b, c, d, e and f

    表  1   样品粗糙度与接触孔相关参数和器件响应非均匀性的关系

    Table  1   The relationship between sample roughness and contact hole related parameters and device response non-uniformity

    Sample Roughness
    /nm
    Average size
    /μm
    Non-uniformity
    of size/%
    Average depth
    /μm
    Non-uniformity
    of depth/%
    Non uniformity
    of response/%
    a 2.77 3.84 4.32 0.78 4.67 2.97
    b 17.78 3.78 12.93 0.77 7.18 3.64
    c 43.13 3.41 38.73 0.69 24.68 7.78
    d 14.31 3.73 15.04 0.75 9.94 3.71
    e 65.18 3.12 52.88 0.61 41.27 10.58
    f 111.01 2.97 89.43 0.59 52.07 15.25
    下载: 导出CSV

    表  2   样品a、b、c、d、e和f的粗糙度、盲元率和响应非均匀性

    Table  2   Roughness, blind pixel rate and response non-uniformity of sample a, b, c, d, e and f

    Sample Roughness
    /nm
    Blind pixel rate/(%) Non uniformity
    of response/%
    a 2.773 0.15 2.97
    b 17.789 0.73 3.64
    c 43.131 1.26 7.78
    d 14.317 0.65 3.71
    e 65.189 2.31 10.58
    f 111.012 3.04 15.25
    下载: 导出CSV
  • [1] 杨建荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012.

    YANG J R. Physics and Technology of HgCdTe of Materials[M]. Beijing: National Defense Insustry Press, 2012.

    [2] 杨海燕, 周晓珺, 侯晓敏, 等. 碲锌镉衬底晶向对碲镉汞薄膜表面形貌的影响[J]. 激光与红外, 2018, 482(11): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201811015.htm

    YANG H Y, ZHOU X J, HOU X M, et al. The influence of the orientation of CdZnTe substrate on the morphology of HgCdTe film[J]. Laser & Infrared, 2018, 482(11): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201811015.htm

    [3] 杨海燕, 胡尚正, 郭明珠, 等. 衬底表面状态对碲镉汞薄膜表面起伏的影响[J]. 激光与红外, 2017, 47(6): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201706019.htm

    YANG H Y, HU S Z, GUO M Z. Influence of surface state of CdZnTe substrate on the surface fluctuation of HgCdTe film[J]. Laser & Infrared, 2017, 47(6): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201706019.htm

    [4] 谭震, 杨海玲, 孙海燕, 等. 大面阵碲镉汞长波红外焦平面器件刻蚀工艺非均匀性研究[J]. 红外, 2019, 40(9): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201909002.htm

    TAN Z, YANG H L, SUN H Y. Research on non-uniformity of etching process for large-format long wave infrared mercury cadmium telluride focal plane device[J]. Infrared, 2019, 40(9): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201909002.htm

    [5] 李震, 胡小燕, 史春伟, 等. 碲镉汞器件接触孔的ICP刻蚀工艺研究[J]. 激光与红外, 2008(12): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200812011.htm

    LI Z, HU X Y, SHI C W. A study of MCT contact hole etching by ICP process[J] Laser & Infrared, 2008(12): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200812011.htm

    [6] 孙丽媛, 高志远, 张露, 等. GaAs材料ICP刻蚀中光刻胶厚度及刻蚀条件对侧壁倾斜度的影响[J]. 功能材料与器件学报, 2012, 18(4): 283-290. DOI: 10.3969/j.issn.1007-4252.2012.04.004

    SUN LY, GAO Z Y, ZHANG L. The innuence of photopersist thickness and etching condition on the slope during the ICP etching process of GaAs[J]. Journal of Functional Matierials and Devices, 2012, 18(4): 283-290. DOI: 10.3969/j.issn.1007-4252.2012.04.004

    [7] 许娇. 红外探测器暗电流成份分析和机理研究[D]. 上海: 中国科学院大学(上海技术与物理研究所), 2016.

    XU J. Analysis on Dark Current Components of Infrared Detector and Its Mechanism Research[D]. Shanghai: University of Chinese Academy of Sciences(Shanghai Institute of Technical Physics), 2016.

    [8] 乔辉. 航天碲镉汞红外探测器工艺与暗电流研究[D]. 上海: 中国科学院大学(上海技术与物理研究所), 2016.

    QIAO H. Study on the Fabrication and Dark Current Characteristics of Spaceborne Mercury Cadmium Telluride Infrared Photodetectors[D]. Shanghai: University of Chinese Academy of Sciences(Shanghai Instituteof Technical Physics), 2016.

    [9] 宋伟林, 孔金丞, 李东升, 等. 金掺杂碲镉汞红外探测材料及器件技术[J]. 红外技术, 2021, 43(2): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202102001.htm

    SONG W L, KONG J C, LI D S. Au-doped HgCdTe infrared material and device technology[J]. Infrared Technology, 2021, 43(2): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202102001.htm

    [10]

    HE Kai, ZHOU Songmin, YANG Li, et al. Effect of surface fields on the dynamic resistance of planar HgCdTe mid-wavelength infrared photodiodes[J]. Journal of Applied Physics, 2015, 117(20): 204501

    [11]

    JIANG F S, SU Y K, CHANG S M, et al. Analysis of the current of focal-plane-array HgCdTe diodes[J]. Materials Chemistry and Physics, 2000, 64(2): 131-136.

    [12]

    LU Q, WANG X, ZHOU S, et al. Effects of different passivation layers on RV characteristics of long-wave HgCdTe gate-controlled diodes[J]. Semiconductor Science and Technology, 2020, 35(9): 095003.

    [13]

    Gopal V, Gupta S, Bhan R K, et al. Modeling of dark characteristics of mercury cadmium telluride n+-p junctions[J]. Infrared Physics & Technology, 2003, 44(2): 143-152.

    [14] 何凯. 碲镉汞红外光伏探测器电学性能表征技术研究[D]. 上海: 中国科学院大学(上海技术与物理研究所), 2015.

    HE K. Electrical Characterization Technique of HgCdTe Infrared Photovoltaic Dtectors[D]. Shanghai: University of Chinese Academy of Sciences(Shanghai Institute of Technical Physics), 2015.

    [15]

    Lopez L, Daoud W A, Dutta D, et al. Effect of substrate morphology and photocatalysis of large-scale TiO2 films[J]. Applied Surface Science, 2013, 265: 162-168.

    [16]

    Karaksina E V, Gracheva T, Ashevarenkov D N. Structual defects in CVD ZnS[J]. Inorganic Materials, 2010, 46(1): 6-10.

    [17]

    Pelliccione M, Tansel Karabacak, Churamani Gaire, et al. Mound formation in surface growth under shadowing[J]. Physical Review B, 2006, 74(12): 5420-1-5420-10.

    [18] 陈书真. ZnS薄膜硫化生长及其结构与光学性能研究[D]. 武汉: 武汉科技大学, 2020.

    CHEN S Z. Study on the Growth and Structure and Optical Properties of ZnS Thin Films Prepared by Sulfidation[D]. Wuhan: Wuhan University of Science and Technology, 2020.

图(9)  /  表(2)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  28
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-25
  • 修回日期:  2021-08-09
  • 刊出日期:  2022-10-19

目录

/

返回文章
返回
x 关闭 永久关闭

尊敬的专家、作者、读者:

端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

感谢您对本刊的支持!

《红外技术》编辑部

2024年6月6日