超表面在微测辐射热计中的应用

杨君, 袁俊, 杨春丽, 王文金, 张杰, 李华妮

杨君, 袁俊, 杨春丽, 王文金, 张杰, 李华妮. 超表面在微测辐射热计中的应用[J]. 红外技术, 2024, 46(1): 1-11.
引用本文: 杨君, 袁俊, 杨春丽, 王文金, 张杰, 李华妮. 超表面在微测辐射热计中的应用[J]. 红外技术, 2024, 46(1): 1-11.
YANG Jun, YUAN Jun, YANG Chunli, WANG Wenjin, ZHANG Jie, LI Huani. Application of Metasurfaces in Microbolometers[J]. Infrared Technology , 2024, 46(1): 1-11.
Citation: YANG Jun, YUAN Jun, YANG Chunli, WANG Wenjin, ZHANG Jie, LI Huani. Application of Metasurfaces in Microbolometers[J]. Infrared Technology , 2024, 46(1): 1-11.

超表面在微测辐射热计中的应用

详细信息
    作者简介:

    杨君(1997-),男,硕士研究生,研究方向是非制冷探测器超表面结构技术研究。E-mail: yangjun_wulisuo@163.com

    通讯作者:

    袁俊(1980-)男,正高工,主要从事红外探测器研究。E-mail:yuanjun5516@tom.com

    杨春丽(1980-),女,正高工,主要从事红外探测器研究。E-mail:149578363@qq.com

  • 中图分类号: TN214

Application of Metasurfaces in Microbolometers

  • 摘要: 超表面突破了传统自然材料的电磁特性限制,同时也解决了三维超材料难以加工实现等瓶颈问题,使器件朝着集成化,小型化,低成本,可调谐的方向不断发展。目前超表面已在许多领域得到了较为广泛的应用,在探测器领域也越来越受到人们的重视,通过独特的材料、结构设计,超表面可有效完成电磁波各项特性的精确调控,通过超表面的集成,微测辐射热计在光吸收增强,器件波段选择改善等方面有了更多的可能性。本文针对超表面及其在微测辐射热计上的应用研究进行了阐述,展现了超表面在这一领域的发展趋势和广阔前景。
    Abstract: Metasurfaces have overcome the electromagnetic limitations of traditional natural materials and solved the bottlenecks of difficult processing and implementation of three-dimensional metamaterials, leading devices to continuously develop towards integration, miniaturization, low cost, and tunability. Metasurfaces are widely used in many fields and are increasingly valued in the field of detectors. Through unique material and structural designs, metasurfaces can effectively achieve precise control of various electromagnetic wave characteristics. Through the integration of metasurfaces, microbolometers are more likely to enhance light absorption and improve the device band selection. This article elaborates on the research on metasurfaces and their applications in microbolometers, demonstrating the development trend and broad prospects of metasurfaces in this field.
  • 星敏感器是当前广泛应用的天体敏感器[1-2],其工作环境必然会受到安装面温度变化等影响,光机结构的热变形会导致镜片面型变化,从而影响光学系统成像质量下降[3-4],会对弥散斑产生较大的影响,为了保证系统的成像质量,需要对结构完成光机热集成分析,分析环境温度对镜头的影响[5]

    随着航天事业的发展,星敏感器已经广泛应用于多种场合[6],由于我国星敏感器研究起步较晚,国内对长焦距大口径星敏感器的研究相对较少,孟祥月[7]等研制了焦距50 mm,入瞳直径40 mm的星敏感器。孙东起[8]等人研制了一种焦距200 mm,入瞳直径125 mm的双高斯光学系统的长焦距星敏感器。伍雁雄[9]等研制了焦距200 mm,入瞳直径100 mm的高精度星敏感器。

    本文设计了一种大口径热不敏星敏感器,光学系统焦距900 mm,入瞳直径200 mm,光谱范围450~750 nm,通过光机热集成分析方法对系统进行热分析,通过将Nastran计算的主次镜表面节点刚体位移代入Sigfit光机热耦合软件进行Zernike多项式拟合,再将主次镜表面Zernike系数导入Zemax光学设计软件中,分析了由于温度变化导致的光机结构刚体位移等变化。

    光学系统参数:焦距范围为900 mm,入瞳直径D≥200 mm,光谱范围为470~900 nm,在热不敏光学系统安装面温度为20℃±5℃时,其光轴偏角优于1″,0.8视场下80%能量集中在9.2~18.4 μm之间。光学系统结构如图 1所示,0.8视场下各波段圈入能量曲线如图 2所示,可以看出满足80%能量集中时,弥散斑直径满足指标要求。

    图  1  光学系统结构图
    Figure  1.  Optical system structure diagram
    图  2  0.8视场各波段弥散斑包围能量曲线
    Figure  2.  Surrounding energy curves of scattered spots in various bands of 0.8 field of view

    本系统采用改进型卡式系统,为保证主镜和后接透镜组的同轴度,选用中心固定形式,主镜材料选用微晶玻璃,为达到热不敏效果,减少温度变化对结构的影响,主镜轴材料应选用与主镜材料热膨胀系数相近的殷钢,主镜通过胶层与主镜轴固定连接,主镜轴作为整个系统的连接构件,具有一定的刚性,而胶层的柔性能够很好的减少重力、温度等对主镜产生的变形影响,主镜结构如图 3所示。

    图  3  主镜结构
    Figure  3.  Main mirror structure

    次镜是非常敏感的光学构件,微小的变化都会带来很大影响,并且支架的大小直接影响光学系统的中心遮挡大小,为保证结构稳定、中心遮挡小以及减小加工难度等原因采用三片殷钢片连接主次镜,能够有效减少温度等因素引起的主次镜间距的变化,支撑结构如图 4所示。

    图  4  主次镜支撑结构
    Figure  4.  Main and secondary mirror support structure

    透镜组通过压圈固定方式保证镜片间间距,镜筒材料采用A704能够减轻结构质量,并且在后端机械结构上留有两个接口方便后续探测器接入,系统整体结构如图 5所示。

    图  5  整体结构模型图
    Figure  5.  Overall structural model diagram

    在本系统中,主次镜结构的稳定性对成像质量的影响最大,本次分析只对主次镜结构进行仿真,分析目的是验证主次镜结构在20±5℃范围内是否满足光学系统设计指标要求。

    通过MSC.Patran建立模型如图 6所示,整个模型采用手工划分网格的方法,控制网格疏密,使得计算结果更加精确,模型主要六面体单元及少量的五面体建模,共有单元数12172个,节点数18707个,结构有限元建模计算中主次镜及支撑结构的材料及其属性参数如表 1所示。

    图  6  有限元模型图
    Figure  6.  Finite element model diagram
    表  1  选用材料属性参数
    Table  1.  Selected material property parameters
    Material Elasticity modulus Ea/MPa Poisson ratio μ Density ρ/(103 kg/m3) CTE α/
    (10-6mm/℃)
    Invar 141000 0.25 8.1 0.2
    TC4 114000 0.29 4.4 8.9
    Microcrystalline glass 90600 0.24 2.53 0.5
    D04 RTV 850 0.40 1.15 236
    下载: 导出CSV 
    | 显示表格

    按照指标要求的环境温度25℃,对主次镜模型施加温度载荷,利用Nastran软件计算得到刚体位移结果,主次镜刚体位移云图如图 7所示,可以看出主镜最大轴向位移为0.228 μm,次镜最大轴向位移为0.986 μm,目前来看热变形结果还在可控范围内。

    图  7  整体位移分布
    Figure  7.  Overall displacement distribution

    利用光机热耦合工具Sigfit输入系统主次镜的曲率半径、主次镜表面节点位置数据、热变形后主次镜表面节点变化数据等进行拟合。温度为25℃时,Sigfit拟合得到的Zernike多项式系数[10]表 2所示。

    表  2  Zernike系数
    Table  2.  Zernike coefficient
    Serial number Expression Value (The main mirror) Value(The secondary mirror)
    1 1 1.53E-05 7.30E-06
    2 ρcosθ 6.47E-10 1.15E-08
    3 ρsinθ 4.36E-10 1.09E-11
    4 2ρ2-1 -1.07E-04 1.26E-05
    5 ρ2cos2θ -8.13E-08 -1.41E-10
    6 ρ2sin2θ 4.33E-08 2.76E-10
    7 (3ρ2-2ρ)cos2θ 3.62E-09 1.74E-11
    8 (3ρ2-2ρ)sin2θ 5.39E-09 -1.85E-08
    9 6ρ4-6ρ2+1 3.63E-06 -3.7E-08
    下载: 导出CSV 
    | 显示表格

    将主次镜的Zernike多项式系数导入Zemax光学设计软件中,即可得到系统弥散斑直径以及光轴的变化,图 8给出了在环境温度25℃,0.8°视场下各波段的圈入能量曲线图,由图中信息可知,各波段80%能量弥散斑直径集中在9.2~18.4 μm之间,与图 2对比可知在温度的影响下,各波段的弥散斑直径也会增大。同时由图 9得到波前RMS(Root-Mean-Square)值为0.035λ<1/12λ,成像质量良好,调用评价函数RAID指令,在0°视场入射光线与像面法线夹角可以近似为光轴偏角约为0.033″优先于1″。

    图  8  0.8视场圈入能量曲线
    Figure  8.  0.8 field of view encirclement energy curves
    图  9  波前图
    Figure  9.  Wavefront diagram

    为检验光机热集成分析的准确性以及光机设计的合理性,设置实验室20±5℃的温度条件下,进行光学系统主镜、次镜以及透镜组系统装调,主镜及透镜组利用三坐标进行检测装调,保证其位置精度,然后利用干涉仪进行次镜的装调工作,系统整体装调结构如图 10所示。

    图  10  系统整体装调结构图
    Figure  10.  Overall system assembly and adjustment structure diagram

    在实验室室温25℃下,系统装调后的轴上视场波像差如图 11所示,RMS值为0.08λ,所测得RMS值与有限元分析结果相差很小,分析实例验证了本系统分析方法的有效性。

    图  11  0视场波像差
    Figure  11.  Zero field of view wave aberration

    本次测试温度环境分别设为15℃、20℃、25℃,采用平行光管照射,镜头放置在精密旋转的调整台上,通过对镜头的成像光斑与能量分布进行分析获得弥散斑,检测图如图 12所示,记录3组数据取平均值最终结果如图 13所示,由此可见各波段均符合在0.8视场下集中80%能量时,弥散斑直径在9.2~18.4 μm区间的指标要求。

    图  12  弥散斑测试现场图
    Figure  12.  Field diagram of diffuse spot testing
    图  13  弥散斑直径图
    Figure  13.  Diffuse spot diameter map

    在20±5℃温度范围内,通过对0°视场像点观测,由公式(1)可知:

    $$ \frac{a}{f} \times \frac{{180^\circ }}{{\text{π }}} \times 3600 < 1'' $$ (1)

    式中:像元大小a为4.6 μm,焦距f为900 mm,经过计算只要像点偏移小于一个像元即可认为光轴偏角优于1″。经过观察,像点最大位移小于一个像元,故可以判断光轴偏角优于1″,满足指标要求。通过对弥散斑直径以及光轴漂移量的检测结果与仿真分析结果对比发现光机热集成分析具有可靠性,所以有必要对系统进行光机热集成分析以快速检验设计的系统是否满足指标。

    本文通过对热不敏光学系统进行结构设计,并对结构进行有限元分析,结合光机热集成分析方法,通过sigfit计算出在20±5℃下主次镜RMS值为0.13λ,将拟合得到的Zernike系数代入光学设计软件Zemax中进行仿真模拟,设计结果表明光轴偏角为0.023″优于1″,波前RMS值为0.035λ,圈入能量80%集中度弥散斑直径在9.2~18.4 μm之间,最终进行装调检测,结果显示系统轴上视场波像差RMS值为0.08λ,实现弥散斑能量80%集中度的直径在9.2~18.4 μm内,像点最大位移小于一个像元,光轴偏角优先于1″,满足项目设计指标要求。该分析方法能够准确地验证系统是否满足指标要求,极大地缩短了研制周期,能够对系统性能进行有效的评估,同时可以将该方法运用到其他光学系统光机热集成分析中。

  • 图  1   超表面相关理论示意图:(a)磁导率μ和介电常数ε正负分类及其对应材料示意图;(b)广义斯涅尔定律示意图(其中左图为其二维形式,右图为其三维形式)[6-7];(c)辅助理解广义斯涅尔定律的溺水者困境示意图[8];(d)亚波长V型金属天线超表面阵列实现反常折射和反射示意图[9];(e)推导PB相位原理的庞加莱球示意图[10]

    Figure  1.   Schematic diagram of metasurface correlation theory: (a) positive and negative classification of magnetic permeability and permittivity and schematic diagram of their corresponding materials; (b) Schematic diagram of Snell's law in a generalized sense(The left image shows its two-dimensional form, and the right image shows its three-dimensional form)[6-7]; (c) Schematic diagram of the drowning person's plight that aids in understanding Snell's law in general[8]; (d) Schematic diagram of parastatic refraction and reflection of subwavelength V-shaped metal antenna metasurface array[9]; (e) Schematic diagram of a Poincaré sphere from which the PB phase principle is derived[10]

    图  2   微测辐射热计超表面结构类型:(a)方块状孔洞型;(b)圆柱状孔洞型;(c)花瓣状天线型;(d)方块状天线型;(e)圆柱状天线型;(f)十字状天线型

    Figure  2.   Microbolometer metasurface structure type: (a) Square shaped pore type; (b) Cylindrical hole type; (c) Petal shaped antenna type; (d) Square antenna type; (e) Cylindrical antenna type; (f) Cross shaped antenna type

    图  3   几种超表面吸收结构及其结果:(a)左图为长波红外吸收共振超表面结构示意图;右图为超表面吸收器的反射光谱图[42];(b)上图和中图分别为周期性超表面结构的俯视图和结构示意图;下图为光学谐振腔和表面等离子体对器件吸收的影响示意图[43];(c)左图为红外宽带超表面吸收器结构示意图;右图为超表面吸收器测量(实心曲线)和仿真(虚线曲线)的吸收光谱响应图[44];(d)左图为结合超表面的微测辐射热计结构示意图;右图为在300℃下进行真空退火前后的电压噪声图[45];(e)左图为红玫瑰状超表面吸收器结构示意图;右图为相对于表面法线入射时角度在0°~45°之间变化所对应的吸收光谱图[46]

    Figure  3.   Several metasurface absorption structures and their result diagrams: (a) The left figure is a schematic diagram of the long-wave infrared absorption resonance metasurface structure; The right image shows the reflectance spectrum of the metasurface absorber[42]; (b) The top view and schematic diagram of the periodic metasurface structure are shown in the upper and middle figures, respectively; The figure below shows the influence of optical resonator and surface plasma on device absorption[43]; (c) The left figure is a schematic diagram of the structure of the infrared broadband metasurface absorber; The right image shows the absorption spectral response diagram of metasurface absorber measurement (solid curve) and simulation (dashed curve)[44]; (d) Top view and schematic diagram of the microbolometer structure combined with metasurface and middle figures, respectively; The figure on the right shows the voltage noise diagram before and after vacuum annealing at 300℃[45]; (e) The left figure is a schematic diagram of the structure of the red rose-shaped metasurface absorber; The right figure is the absorption spectrum corresponding to the change of angle between 0° to 45° relative to the surface normal[46]

    图  4   几种超表面波长选择结构及其结果(1):(a)上图为中红外多光谱超表面基本单元结构示意图;下图为宽度不同的超表面吸收器集成到微测辐射热计上的吸收光谱图[49];(b)左上、右上、中图分别为偶极型电阻板、槽型电阻板及偶极-槽镜堆叠超表面吸收器结构示意图;下图为偶极型电阻板层(红)、槽型电阻板层(蓝)及偶极-槽镜堆叠结构(黑)的吸收光谱图[50];(c)左图为多光谱波长选择性超表面吸收器及超表面单个单元结构示意图;右图为三种不同尺寸的超表面吸收器的光谱响应图[51]

    Figure  4.   Several metasurface wavelength selection structures and their results (1) : (a) The above figure is a schematic diagram of the basic unit structure of the mid-infrared multispectral metasurface; The figure below shows the absorption spectrum integrated into the microbolometer with metasurface absorbers of different widths[49]; (b) The upper left, upper right, and middle figures are the schematic diagram of the structure of dipole type resistance plate, slot type resistance plate and dipole-slot mirror stacked metasurface absorber; The figure below shows the absorption spectra of the dipole resistor plate layer (red), the slot resistor plate layer (blue) and the dipolar-slot mirror stack structure (black)[50]; (c) The figure on the left is a schematic diagram of the structure of a multispectral wavelength-selective metasurface absorber and a single unit of metasurface; The figure on the right shows the spectral response of three metasurface absorbers of different sizes[51]

    图  5   几种超表面波长选择结构及其结果(2):(a)左上图为超表面结构示意图;右上图为超表面单个单元结构示意图;左下图为超表面的光谱响应图;右下图为吸收峰值波长与超表面顶部金盘半径的关系图[52];(b)上图为六边形阵列窄带超表面结构示意图,下图为集成到微测辐射热计中的宽带超表面结构示意图[53];(c)左图为超表面集成到SixGeyO1-x-y红外微测辐射计的装置结构侧视图(左为单腔,右为双腔);右图为单腔微测辐射计的响应率和探测率示意图[54]

    Figure  5.   Several metasurface wavelength selection structures and their results (2) : (a) The upper left figure is a schematic diagram of the metasurface structure; The upper right figure is a schematic diagram of the metasurface single element structure; The lower left figure shows the spectral response of the metasurface; The figure below on the right shows the relationship between the absorption peak wavelength and the radius of the gold disk at the top of the metasurface[52]; (b) The figure above is a schematic diagram of the narrowband metasurface structure of a hexagonal array, and the figure below is a schematic diagram of the broadband metasurface structure integrated into a microbolometer[53]; (c) The figure on the left shows a side view of the metasurface integrated into the SixGeyO1-x-y infrared microradiometer (single chamber on the left, double chamber on the right); The figure on the right is a schematic diagram of the response rate and detection rate of a single-cavity microradiometer[54]

    图  6   几种超表面波长选择结构及其结果(3):(a)左上,右上图分别为利用液晶调谐的吸收器截面图和在0 V(蓝色)和6 V(绿色)条件下液晶调谐吸收器的模拟(虚线)、测量(实线)反射光谱图;左下,右下图分别为为利用吸收腔压电调谐的吸收器截面图和不同腔体厚度值下的反射光谱图[55];(b)上图为波长选择性测辐射热计示意图(底部为全视图,顶部为截面图);下图为器件谐振波长与谐振器宽度(w)的关系图[57];(c)左图为用于光谱和偏振检测的超表面集成微测辐射热计结构图;右下图为两种天线宽度不同的宽度超表面吸收器截面图及他们所对应的光谱吸收曲线图[58]

    Figure  6.   Several metasurface wavelength selection structures and their results (3) : (a) upper left and upper right figures are respectively the cross-section of the absorber tuned by liquid crystal and the simulation (dashed line) and measurement (solid line) reflection spectrum of the liquid crystal tuned absorber under 0 volt (blue) and 6 volts (green) conditions; The lower left and the lower right figures show the cross-section of the absorber tuned by piezoelectric tuning of the absorption cavity and the reflection spectrum under different cavity thickness values[55]; (b) Schematic diagram of wavelength-selective bolometer above (full view at the bottom and cross-sectional view at the top); The figure below shows the relationship between the resonant wavelength of the device and the width of the resonator (W)[57]; (c) The left image shows the structural diagram of a metasurface integrated microbolometer for spectral and polarization detection; The right image shows the cross-sectional view of the metasurface absorber with different widths of the two antennas and their corresponding spectral absorption curves[58]

  • [1]

    Veselago V G. The electrodynamics of substance with simultaneously negative values of ε and μ[J]. Physics-Uspekhi, 1968, 10: 509-514. DOI: 10.1070/PU1968v010n04ABEH003699

    [2]

    Pendry J B. Negative refraction index makes perfect lens[J]. Phys. Rev. Lett. , 2000, 85: 3966-3969. DOI: 10.1103/PhysRevLett.85.3966

    [3]

    Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Phys. Rev. Lett, 2000, 84(18): 4184-4187. DOI: 10.1103/PhysRevLett.84.4184

    [4] 罗先刚. 亚波长电磁学(上册)[M]. 北京: 科学出版社, 2017: 197-232.

    LUO Xiangang. Subwavelength Eectromagnetism (Volume 1)[M]. Beijing: Science Press, 2017: 197-232.

    [5] 李荣真. 基于超表面结构的等离子体偏振器件的研究[D]. 合肥: 合肥工业大学, 2016.

    LI Rongzhen. Study of Plasma Polarization Devices Based on Metasurface Structures[D]. Hefei: Hefei University of Technology, 2016.

    [6]

    YU N, Genevet P, Kats M, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. American Association for the Advancement of Science, 2011, 6054: 333-337.

    [7]

    CHEN Houtong, Antoinette J Taylor, YU Nanfang. A review of metasurfaces: physics and applications[J/OL]. Optics, 2017, https://arxiv.org/abs/1605.07672 .

    [8]

    YU Nanfang, Federico Capasso. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13: 139-150. DOI: 10.1038/nmat3839

    [9]

    Aieta F, Genevet P, Yu N, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters, 2012, 12(3): 1702-1706. Doi: 10.1021/nl300204s.

    [10]

    Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141-1143. DOI: 10.1364/OL.27.001141

    [11]

    Peifer C, Grhic A. Metamaterial huygens' surfaces: tailoring wave fronts with reflectionless sheets[J]. Phys. Rev. Lett. , 2013(110): 197401.

    [12]

    LUO X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201-594201.

    [13]

    PU Mingbo, HU Chenggang, WANG Min, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18): 17413-17420. DOI: 10.1364/OE.19.017413

    [14] 彭华新, 周济, 崔铁军, 等. 超材料[M]. 北京: 中国铁道出版社, 2020.

    PENG Huaxin, ZHOU Ji, CUI Tiejun, et al. Metamaterial[M]. Beijing: China Railway Press, 2020.

    [15]

    Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Publishing Group, 2014, 8(12): 889-898.

    [16]

    Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. DOI: 10.1021/nl302516v

    [17]

    LIN D, FAN P, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302. DOI: 10.1126/science.1253213

    [18]

    Khorasaninejad M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. DOI: 10.1021/acs.nanolett.6b05137

    [19]

    CHEN K, FENG Y, Monticone F, et al. A reconfigurable active Huygens' metalens[J]. Advanced Materials, 2017, 29(17): 1606422. DOI: 10.1002/adma.201606422

    [20]

    ZHENG G, Muehlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency [J]. Nature Nanotechnology, 2015, 10(4): 308-312. DOI: 10.1038/nnano.2015.2

    [21]

    LEE G Y, YOON G, LEE S Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9): 4237-4245. DOI: 10.1039/C7NR07154J

    [22]

    NI Xingjie, Alexander V Kildishev, Vladimir M Shalaev. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807. DOI: 10.1038/ncomms3807

    [23]

    Kuznetsov S A, Astafev M A, Beruete M, et al. Planar holographic metasurfaces for Terahertz focusing[J]. Sci. Rep. , 2015, 5: 7738. DOI: 10.1038/srep07738

    [24]

    Yuk T I, CHEUNG S W, ZHU H L. Mechanically pattern reconfigurable antenna using metasurface[J]. IET Microwaves, Antennas & Propagation, 2015, 9(12): 1331-1336.

    [25]

    ZHU H L, CHEUNG S W, LIU X H, et al. Design of polarization reconfigurable antenna using metasurface[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(6): 2891-2898. DOI: 10.1109/TAP.2014.2310209

    [26]

    NI C, CHEN M, ZHANG Z, et al. Design of frequency and polarization reconfigurable antenna based on the polarization conversion metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 17(1): 78-81.

    [27]

    WAN X, ZHANG L, JIA S L, et al. Horn antenna with reconfigurable beam-refraction and polarization based on anisotropic huygens metasurface[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4427-4434. DOI: 10.1109/TAP.2017.2722829

    [28]

    CAI H, CHEN S, ZOU C, et al. Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves[J]. Adv. Opt. Mater. , 2018, 6(14): 1800257. DOI: 10.1002/adom.201800257

    [29]

    Tasolamprou A C, Koulouklidis A D, Daskalaki C, et al. Experimental demonstration of ultrafast thz modulation in a graphene-based thin film absorber through negative photoinduced conductivity[J]. ACS Author Choice, 2019, 6(3): 720-727.

    [30]

    ZHAO X, WANG Y, Schalch J, et al. Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers[J]. Acs Photonics, 2019, 6(4): 830-837. DOI: 10.1021/acsphotonics.8b01644

    [31]

    CONG L, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams[J]. Advanced Materials, 2020, 32(28): 2001418. DOI: 10.1002/adma.202001418

    [32]

    Mousavi S H, Khanikaev A B, Neuner B, et al. Suppression of long-range collective effects in meta-surfaces formed by plasmonic antenna pairs[J]. Optics Express, 2011, 19(22): 22142-22155. DOI: 10.1364/OE.19.022142

    [33]

    ZHANG J, MEI Z, ZHANG W, et al. An ultrathin directional carpet cloak based on generalized snell's law[J]. Applied Physics Letters, 2013, 103(15): 1780.

    [34]

    LIU S, XU H X, ZHANG H C, et al. Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface[J]. Optics Express, 2014, 22(11): 13403-13417. DOI: 10.1364/OE.22.013403

    [35]

    NI Xingjie, WONG Zijing, Michael M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314. DOI: 10.1126/science.aac9411

    [36]

    TAN X, ZHANG H, LI J, et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors[J]. Nature Communications, 2020, 11(1): 5245. DOI: 10.1038/s41467-020-19085-1

    [37] 苏君红. 红外材料与探测技术[M]. 杭州: 浙江科学技术出版社, 2015.

    SU Junhong. Infrared Materials and Detection Technology[M]. Hangzhou: Zhejiang Science and Technology Press, 2015.

    [38]

    Dereniak L Eustace. Infrared Detectors and Systems[M]. Hoboken: Wiley, 1996.

    [39] 邓洪朗, 周绍林, 岑冠廷. 红外和太赫兹电磁吸收超表面研究进展[J]. 光电工程, 2019, 46(8): 13.

    DENG Honglang, ZHOU Shaolin, CEN Guanting. Progress in infrared and THz electromagnetic absorption metasurface[J]. Photoelectric Engineering, 2019, 46(8): 13.

    [40] 徐天宇. 微纳结构超表面增强吸收研究[D]. 长春: 长春理工大学, 2019.

    XU Tianyu. Ultrasurface-Enhanced Absorption Study of Micro-Nano Structures[D]. Changchun: Changchun University of Science and Technology, 2019.

    [41]

    Maier T, Brückl H. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters, 2009, 34(19): 3012-3014. DOI: 10.1364/OL.34.003012

    [42]

    Smith E M, Nath J, Ginn J, et al. Responsivity improvements for a vanadium oxide microbolometer using subwavelength resonant absorbers[C]// SPIE Defense + Security, 2016, Doi: 10.1117/12.2223954.

    [43]

    LI Q, YU B Q, LI Z F. Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application[J]. Chinese Physics B, 2017(8): 269-274.

    [44]

    JUNG J Y, SONG K, Choi J H, et al. Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer[J]. Scientific Reports, 2017, 7(1): 430. DOI: 10.1038/s41598-017-00586-x

    [45]

    Alkorjia O, Abdullah A, Koppula A. Metasurface based uncooled microbolometer with high fill factor[C]// International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors, XXXIII, 2019: 2126-2129.

    [46]

    Swett D W. Near zero index perfect metasurface absorber using inverted conformal mapping[J]. Scientific Reports, 2020, 10(1): 9731. DOI: 10.1038/s41598-020-66476-x

    [47]

    Joseph J Talghader, Anand S Gawarikar, Ryan P Shea. Spectral selectivity in infrared thermal detection[J]. Light: Science & Applications, 2012, 1(8): e24-e24.

    [48]

    Thomas Maier, Hubert Brückl. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters, 2009, 34(19): 3012-3014. DOI: 10.1364/OL.34.003012

    [49]

    Maier T, Brueckl H. Multispectral microbolometers for the midinfrared[J]. Optics Letters, 2010, 35(22): 3766-3768. DOI: 10.1364/OL.35.003766

    [50]

    Kim H, Neikirk D P, Andresen B F, et al. Three-dimensional dual-band stacked microbolometer design using resistive dipoles and slots[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2013, 8704: 19.

    [51]

    JUNG J Y, LEE J, CHOI D G, et al. Wavelength-selective infrared metasurface absorber for multispectral thermal detection[J]. IEEE Photonics Journal, 2015, 7(6): 1-11.

    [52]

    DU K, LI Q, ZHANG W, et al. Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers[J]. IEEE Photonics Journal, 2015, 7(3): 1-8.

    [53]

    LIU Tao, QU Chuang, Mahmoud Almasri, et al. Design and analysis of frequency-selective surface enabled microbolometers[C]//Infrared Technology and Applications XLII. SPIE, 2016, 9819: 487-494.

    [54]

    LIU T, Abdullah A A, Alkorjia O, et al. Device architecture for metasurface integrated Uncooled SixGeyO1-x-y Infrared Microbolometers (Conference Presentation)[C]// Infrared Technology and Applications XLV, 2019, 11002: 372-378.

    [55]

    Creazzo T A, Zablocki M J, Zaman L, et al. Frequency selective infrared optical filters for micro-bolometers [C]// SPIE Defense + Security, 2017, 10194: 611-618.

    [56]

    Gallacher K, Millar R W, Giliberti V, et al. Mid-infrared n-Ge on Si plasmonic based microbolometer sensors[C]//IEEE International Conference on Group IV Photonics, 2017: 3-4.

    [57]

    DAO T D, Doan A T, Ishii S, et al. MEMS-based wavelength-selective bolometers[J]. Micromachines, 2019, 10(6): 416. DOI: 10.3390/mi10060416

    [58]

    JIANG S, LI J, LI J, et al. Metamaterial microbolometers for multi-spectral infrared polarization imaging[J]. Optics Express, 2022, 30(6): 9065-9087. DOI: 10.1364/OE.452981

  • 期刊类型引用(0)

    其他类型引用(1)

图(6)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  66
  • PDF下载量:  146
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-12-03
  • 修回日期:  2023-02-14
  • 刊出日期:  2024-01-19

目录

/

返回文章
返回