640×512小型化红外探测器杜瓦组件可靠性研究

熊雄, 段煜, 胡明灯, 李锐平, 杜宇, 毛剑宏

熊雄, 段煜, 胡明灯, 李锐平, 杜宇, 毛剑宏. 640×512小型化红外探测器杜瓦组件可靠性研究[J]. 红外技术, 2022, 44(1): 89-95.
引用本文: 熊雄, 段煜, 胡明灯, 李锐平, 杜宇, 毛剑宏. 640×512小型化红外探测器杜瓦组件可靠性研究[J]. 红外技术, 2022, 44(1): 89-95.
XIONG Xiong, DUAN Yu, HU Mingdeng, LI Ruiping, DU Yu, MAO Jianhong. Reliability Research for 640×512 Miniaturized IR Detector Dewar Assembly[J]. Infrared Technology , 2022, 44(1): 89-95.
Citation: XIONG Xiong, DUAN Yu, HU Mingdeng, LI Ruiping, DU Yu, MAO Jianhong. Reliability Research for 640×512 Miniaturized IR Detector Dewar Assembly[J]. Infrared Technology , 2022, 44(1): 89-95.

640×512小型化红外探测器杜瓦组件可靠性研究

详细信息
    作者简介:

    熊雄(1986-),男,湖南长沙人,工程师,主要从事红外探测器封装技术研究。E-mail:xiongxiong0423@163.com

  • 中图分类号: TN215

Reliability Research for 640×512 Miniaturized IR Detector Dewar Assembly

  • 摘要: 在SWaP3(Size, Weight, and Power, Performance and Price)概念的驱使下,第三代制冷红外探测器向着高性能、小型化和轻量化的方向发展。作为军用核心电子元器件,制冷红外探测器的可靠性成为研究的重点。以浙江珏芯微电子有限公司所研制的640×512/15 μm小型化杜瓦组件为研究对象,开展了系统性的可靠性研究与试验,涉及到力学、热力学、多余物和真空寿命四个维度。经各项可靠性试验后,640×512/15 μm小型化杜瓦组件的性能保持良好,该结果表明此杜瓦组件在总体上具有较高的可靠性,能够满足常规军事应用需求。
    Abstract: Driven by the concept of SWaP3 (Size, Weight, and Power, Performance and Price), the development of the third-generation cooled IR detectors is proceeding in the direction of high performance, miniaturization, and light weight. As core military electronic devices, the reliability of IR detectors has become the focus of research. In this study, based on the 640×512/15 μm miniaturized dewar developed by Zhejiang Juexin Microelectronics Co., Ltd., a systematic reliability research is carried out. This research involves four dimensions, namely mechanics, thermodynamics, remainders, and vacuum. The performance of the 640×512/15 μm miniaturized dewar is evaluated through reliability tests. The results show that the miniaturized dewar has high reliability to satisfy most military needs.
  • 图  1   640×512小型化红外探测器组件(a)及成像效果图(b)

    Figure  1.   640×512 miniaturized dewar(a) and imaging(b)

    图  2   640×512小型化红外探测器杜瓦组件

    Figure  2.   640×512 miniaturized IR detector dewar

    图  3   640×512小型化杜瓦组件固有频率仿真图

    Figure  3.   Natural frequency simulation diagram of 640×512 miniaturized dewar

    图  4   随机振动试验参数

    Figure  4.   Parameters of random vibration test

    图  5   冲击试验参数

    Figure  5.   Parameters of shock test

    图  6   经优化后的杜瓦组件冷头应力分布图

    Figure  6.   Stress distribution of dewar cold tip after optimization

    图  7   经优化后的杜瓦组件冷头形变图

    Figure  7.   Deformation distribution of dewar cold tip after optimization

    图  8   经优化后的杜瓦组件FPA温场分布图

    Figure  8.   Temperature field distribution of dewar cold tip after optimization

    图  9   640×512小型化杜瓦组件抗温变性能试验前(a)和试验后芯片盲元分布情况(b)

    Figure  9.   The blind pixels distribution of 640×512 miniaturized dewar before temperature shock test (a) and after test (b)

    图  10   加速寿命试验中杜瓦组件静态热负载波动情况

    Figure  10.   The fluctuation of static heat load of dewar in accelerated life test

    表  1   640×512小型化杜瓦组件试验前后芯片关键性能比较

    Table  1   Main parameters comparison of 640×512 miniaturized dewar before and after test

    Performance Parameter before test Parameter after test
    Number of total blind pixels 60 66
    Blind pixel rate/% 0.018 0.020
    Response non-uniformity/% 4.45 4.47
    NETD/mK 13.74 13.92
    下载: 导出CSV
  • [1]

    Philippe C. Sofradir MCT technology for space applications[C]//SPIE, 2009, 7330: 1-12.

    [2]

    Marianne M, Xavier B, PhilippeT. IR detector dewar and assemblies for stringent environmental conditions[C]//SPIE, 2007, 6542: 1-11.

    [3]

    Xavier B, Alain M, Michel V, et al. Reliability optimization for IR detectors with compact cryo-coolers[C]//SPIE, 2005, 5783: 187-198.

    [4] 张亚平, 朱颖峰, 刘湘云, 等. 基于材料放气特性的杜瓦真空失效时间研究[J]. 真空, 2016, 53(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201601017.htm

    ZHANG Yaping, ZHU Yingfeng, LIU Xiangyun, et al. Dewar vacuum failure time based on the material outgassing characteristics[J]. Vacuum, 2016, 53(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201601017.htm

    [5] 王冠, 孟令伟, 张冬亮, 等. 640×512 15μm杜瓦真空失效的极限真空度研究[J]. 激光与红外, 2019, 49(12): 1442-1446. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201912010.htm

    WANG Guan, MENG Lingwei, ZHANG Dongliang, et al. Study on the limit vacuum degree of 640×512 15 μm dewar vacuum failure[J]. Laser & Infrared, 2019, 49(12): 1442-1446. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201912010.htm

    [6] 孙闻, 俞君, 张磊. 微型红外探测器组件集成技术及其应用[J]. 红外, 2017, 38(4): 1-5. DOI: 10.3969/j.issn.1672-8785.2017.04.001

    SUN Wen, YU Jun, ZHANG Lei. Integrated technology of miniature infrared detector assembly and its application[J]. Infrared, 2017, 38(4): 1-5. DOI: 10.3969/j.issn.1672-8785.2017.04.001

    [7] 中国兵器工业集团有限公司. 热像仪用多元金属杜瓦瓶通用规范[S].

    GJB 8674-2015, 2016. China North Industries Group Corporation Limited. General specification of multi-lead metal dewar for thermal imaging systems[S]. GJB 8674-2015, 2016.

    [8] 黄一彬, 王英, 朱颖峰, 等. 红外探测器杜瓦封装多余物的衍射分析及控制[J]. 红外与激光工程, 2021, 50(3): 20200177. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202103011.htm

    HUANG Yibin, WANG Ying, ZHU Yingfeng, et al. Diffraction analysis and control of remainders in infrared detector dewar packaging[J]. Infrared and Laser Engineering, 2021, 50(3): 20200177. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202103011.htm

    [9] 黄燕, 吴全信. 阿列尼乌斯模型在红外微型金属杜瓦的真空寿命试验研究中的应用[J]. 低温与超导, 2005, 33(2): 69-72. DOI: 10.3969/j.issn.1001-7100.2005.02.017

    HUANG Yan, WU Quanxin. Application of Arrhenius model in vacuum life test research of infrared miniature metal dewar[J]. Cryogenicsand Superconductivity, 2005, 33(2): 69-72. DOI: 10.3969/j.issn.1001-7100.2005.02.017

    [10] 张亚平, 刘湘云. 红外微型杜瓦真空退化特性研究综述[J]. 红外, 2013, 34(2): 10-15. DOI: 10.3969/j.issn.1672-8785.2013.02.02

    ZHANG Yaping, LIU Xiangyun. Review of vacuum degradation in infrared detector micro-dewar[J]. Infrared, 2013, 34(2): 10-15. DOI: 10.3969/j.issn.1672-8785.2013.02.02

    [11] 张亚平, 徐世春, 徐冬梅, 等. 快速评价微杜瓦真空寿命及应用[J]. 真空科学与技术学报, 2018, 38(7): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201807003.htm

    ZHANG Yaping, XU Shichun, XU Dongmei, et al. Rapid prediction of longest holding-time of high-vacuum in micro-dewar: an experimental sudy[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(7): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201807003.htm

    [12]

    WANG Yang, MENG Chao, MA Wei. Review of reliability research on infrared detector[C]//SPIE, 2021, 11763: 1-7.

    [13] 王洋, 张宏飞, 孟超, 等. InSb多元探测器玻璃杜瓦贮存寿命研究[J]. 航空兵器, 2020, 27(2): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ202002013.htm

    WANG Yang, ZHANG Hongfei, MENG Chao, et al. Study on the storage life of InSb multi-element detector glass dewar[J]. Aero Weaponry, 2020, 27(2): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ202002013.htm

    [14] 林日东, 刘伟, 王冠, 等. 红外焦平面探测器杜瓦组件真空寿命分析[J]. 激光与红外, 2011, 41(7): 779-783. DOI: 10.3969/j.issn.1001-5078.2011.07.015

    LIN Ridong, LIU Wei, WANG Guan, et al. Vacuum life analyse of infrared detector & dewar assembly[J]. Laser & Infrared, 2011, 41(7): 779-783. DOI: 10.3969/j.issn.1001-5078.2011.07.015

  • 期刊类型引用(7)

    1. 杜素忠,杨均流,贺小齐,梁新星. 铜电积车间槽面温度热成像智能检测预警方法. 化工自动化及仪表. 2021(01): 24-28+57 . 百度学术
    2. 钟鑫豪,龙永红,何震凯. 铜电解极板短路检测方法综述. 电子产品世界. 2021(04): 78-80 . 百度学术
    3. 刘金泉,罗明辉. 红外智能巡检机器人在铜电解过程中的应用. 铜业工程. 2021(01): 99-101 . 百度学术
    4. 杜素忠,梁新星,周飞舟,贺小齐,侯建硕,李新宇. 铜电积槽面电路故障智能监测系统的研究. 湿法冶金. 2020(01): 51-55 . 百度学术
    5. 刘齐,王茂军,高强,李晓明,石林. 基于红外成像技术的电气设备故障检测. 电测与仪表. 2019(10): 122-126+152 . 百度学术
    6. 张荣,刘小燕,武伟宁,鲁新月. 回转窑筒体热损失测量系统的研究. 电子测量与仪器学报. 2017(11): 1843-1848 . 百度学术
    7. 王一丁,马晓蕾,贺文强. 基于红外图像的铜电解短路检测. 北方工业大学学报. 2016(03): 1-7 . 百度学术

    其他类型引用(4)

图(10)  /  表(1)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  147
  • PDF下载量:  219
  • 被引次数: 11
出版历程
  • 收稿日期:  2021-10-10
  • 修回日期:  2021-11-10
  • 刊出日期:  2022-01-19

目录

    /

    返回文章
    返回