红外遥感相机多负载制冷控制器的设计与实现

汪瑜, 王新皓, 郝中洋, 刘成

汪瑜, 王新皓, 郝中洋, 刘成. 红外遥感相机多负载制冷控制器的设计与实现[J]. 红外技术, 2024, 46(11): 1251-1260.
引用本文: 汪瑜, 王新皓, 郝中洋, 刘成. 红外遥感相机多负载制冷控制器的设计与实现[J]. 红外技术, 2024, 46(11): 1251-1260.
WANG Yu, WANG Xinhao, HAO Zhongyang, LIU Cheng. Design and Implementation of Multi-Load Refrigeration Controller for Infrared Remote Sensing Cameras[J]. Infrared Technology , 2024, 46(11): 1251-1260.
Citation: WANG Yu, WANG Xinhao, HAO Zhongyang, LIU Cheng. Design and Implementation of Multi-Load Refrigeration Controller for Infrared Remote Sensing Cameras[J]. Infrared Technology , 2024, 46(11): 1251-1260.

红外遥感相机多负载制冷控制器的设计与实现

详细信息
    作者简介:

    汪瑜(1989-),女,高级工程师,研究方向为空间遥感相机部组件的高精度温度控制。E-mail:18811446997@sina.cn

  • 中图分类号: V444.3

Design and Implementation of Multi-Load Refrigeration Controller for Infrared Remote Sensing Cameras

  • 摘要:

    制冷控制器是红外遥感相机的重要部组件,其温控精度直接影响着相机成像质量。随着控温性能指标要求越来越高,相机部组件的制冷需求也越来越多,多功能、高性能、低重量、少成本的新型制冷控制器的研制变得越来越迫切。针对这些问题,本文设计集中型多负载红外遥感相机制冷控制器,采用电路模块复用与测控温分离的方法实现多负载控制。硬件上,在传统制冷控制器的基础上进行模块复用小型化设计,实现由“单电源、单主控、多驱动”组成的集中型硬件产品;提出“控制器+测温盒”的测控温分离方法,就近采集温度数据以保证测温精度,从而提高控温精度。软件上,配合硬件方案完成软件架构设计、测控温匹配设计、多负载驱动独立设计、温度数据可靠性设计。以此设计方案为基础,“一带三”制冷控制器的实验数据显示,该设计满足测控温匹配、驱动独立、精密控温的功能性能要求,同时±8 mK的制冷控温精度完全满足了高质量成像要求,该方案可行。

    Abstract:

    The refrigeration controller is an important component of an infrared remote sensing camera, and its temperature control accuracy directly affects the imaging quality of the camera. With increasing requirements for temperature control performance indicators and demand for refrigeration of camera components, the development of new multifunctional, high-performance, low-weight, and low-cost refrigeration controllers has become increasingly urgent. In response to these issues, a centralized multi-load infrared remote sensing camera refrigeration controller that adopts the method of circuit module reuse, temperature measurement, and control separation to achieve multi roads control was designed in this study. In terms of hardware, modular reuse and design miniaturization are carried out on the basis of traditional refrigeration controllers, achieving a centralized hardware product composed of a "single power supply, single master control, and multiple drivers." When a temperature measurement is proposed, the control separation method of "controller + temperature measurement box" is enacted and temperature data is collected nearby to ensure the temperature measurement accuracy and improve the temperature control accuracy. In terms of software, the design incorporates a complete software architecture, measurement and control temperature matching, independent design for multi load drives, and temperature data reliability, in conjunction with hardware solutions. Based on this design scheme, the experimental data of the "Drive and Road Three" refrigeration controller shows that the design meets the functional performance requirements of temperature matching, independent driving, and precise temperature control. At the same time, the cooling and temperature control accuracy of ± 8 mK fully meets the requirements of high-quality imaging, which makes this scheme feasible.

  • 图  1   多负载制冷控制器

    Figure  1.   Multi-load refrigeration controller

    图  2   传统制冷控制器与测温盒的测温电路对比

    Figure  2.   Comparison of the temperature measurement circuit between the traditional refrigeration controller (up) and the temperature measurement box (down)

    图  3   422总线电路与数据传输格式

    Figure  3.   422 bus circuit and data transmission format

    图  4   测控温匹配软件流程

    Figure  4.   Measurement and control temperature matching flowchart

    图  5   增量式PID算法优化

    Figure  5.   Incremental PID algorithm optimization

    图  6   优化前后控温精度比对

    Figure  6.   Comparison of temperature control accuracy before and after optimization

    图  7   故障定位流程图

    Figure  7.   Fault location flowchart

    图  8   多负载数据独立交互处理

    Figure  8.   Independent interactive processing of multi-load data

    图  9   并行控制软件方法

    Figure  9.   Parallel control software method

    图  10   制冷控制器与测温盒

    Figure  10.   Refrigeration controller and temperature measuring box

    图  11   通道切换电路特性

    Figure  11.   Channel switching circuit characteristics

    图  12   测温盒与控制器数据传输实测图

    Figure  12.   The actual measurement diagram of the data transmission between the temperature measuring box and the controller

    图  13   “一带三”驱动波形输出

    Figure  13.   "One Drive Three" drive waveform output

    图  14   控温精度

    Figure  14.   Temperature control accuracy

  • [1]

    WANG Jin, GONG Mengmeng, ZHU Shanglong, et al. Research on intelligent temperature control technology for spacecraft with instantaneous high power load[J]. Journal of Physics: Conference Series, 2021, 1871(1): 52.

    [2] 谢妮慧, 汪瑜, 刘志宏. 制冷软件通用化关键技术研究[J]. 航天返回与遥感, 2021, 42(1): 115-124. DOI: 10.3969/j.issn.1009-8518.2021.01.014

    XIE Nihui, WANG Yu, LIU Zhihong. Research on the key technologies of generalization of refrigeration software[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(1): 115-124. DOI: 10.3969/j.issn.1009-8518.2021.01.014

    [3] 耿振华, 久元溦, 汪瑜, 等. 一种高精度输出可调型恒流源驱动电路的设计[J]. 航天返回与遥感, 2020, 41(3): 86-92. DOI: 10.3969/j.issn.1009-8518.2020.03.010

    GENG Zhenhua, JIU Yuanli, WANG Yu, et al. Design of a high-precision output-adjustable constant-current source drive circuit[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(3): 86-92. DOI: 10.3969/j.issn.1009-8518.2020.03.010

    [4] 王阳, 孟庆亮, 郭楠. 多模式控温在航天光学遥感器上的应用[J]. 航天返回与遥感, 2020, 41(3): 79-85. DOI: 10.3969/j.issn.1009-8518.2020.03.009

    WANG Yang, MENG Qingliang, GUO Nan. Application of multi-mode temperature control in aerospace optical remote sensor[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(3): 79-85. DOI: 10.3969/j.issn.1009-8518.2020.03.009

    [5] 汪瑜, 耿振华. 高轨遥感相机中焦面制冷机的功率驱动方案设计[J]. 微电机, 2019, 12: 90-95.

    WANG Yu, GENG Zhenhua. Design of power drive scheme for focal surface refrigerator in high-orbit remote sensing camera[J]. Micromotors, 2019, 12: 90-95.

    [6] 黄金亮. PWM变流器中MOSFET器件的电磁隔离驱动技术研究[D]. 西安: 西安理工大学, 2016.

    HUANG Jinliang. Research on Electromagnetic Isolation Driving Technology of MOSFET Devices in PWM Converters[D]. Xi'an: Xi'an University of Technology, 2016.

    [7] 郑鹏. 星载脉冲管制冷机电控系统设计[D]. 西安: 西安电子科技大学, 2011.

    ZHENG Peng. Design of Electronic Control System for Spaceborne Pulse Tube Refrigerator[D]. Xi'an: Xidian University, 2011.

    [8] 常霞, 张鹏, 李恺, 等. 一种轻小型遥感相机高精度主动热控设计[J]. 计算机测量与控制, 2014, 22(7): 224-227. DOI: 10.3969/j.issn.1671-4598.2014.07.083

    CHANG Xia, ZHANG Peng, LI Kai, et al. A high-precision active thermal control design for a light and small remote sensing camera[J]. Computer Measurement and Control, 2014, 22(7): 2274-227. DOI: 10.3969/j.issn.1671-4598.2014.07.083

    [9] 李旋球, 陈坚, 赵勇, 等. 一款磁隔离DC/DC变换器反馈环路设计[J]. 电力电子技术, 2014, 48(8): 74-76. DOI: 10.3969/j.issn.1000-100X.2014.08.024

    LI Xuanqiu, CHEN Jian, ZHAO Yong, et al. A feedback loop design of magnetically isolated DC/DC converter[J]. Power Electronics Technology, 2014, 48(8): 74-76. DOI: 10.3969/j.issn.1000-100X.2014.08.024

    [10] 王芸, 石志成, 赵筱琳, 等. 光电耦合器件在低地球轨道航天器中的运用评估[J]. 航天器环境工程, 2015, 32(5): 543-548. DOI: 10.3969/j.issn.1673-1379.2015.05.016

    WANG Yun, SHI Zhicheng, ZHAO Xiaolin, et al. Application evaluation of optocoupler devices in low earth orbit spacecraft[J]. Spacecraft Environmental Engineering, 2015, 32(5): 543-548. DOI: 10.3969/j.issn.1673-1379.2015.05.016

    [11] 王豪. 一种面向航天应用的高可靠FPGA设计架构研究[J]. 航天控制, 2015, 33(6): 64-69. DOI: 10.3969/j.issn.1006-3242.2015.06.011

    WANG Hao. Research on a high reliability FPGA design architecture for aerospace applications[J]. Aerospace Control, 2015, 33(6): 64-69. DOI: 10.3969/j.issn.1006-3242.2015.06.011

    [12] 王豪. 一种高可靠宇航控制器设计及可靠性评估[J]. 计算机测量与控制, 2016, 24(6): 298-301.

    WANG Hao. Design and reliability evaluation of a highly reliable aerospace controller[J]. Computer Measurement and Control, 2016, 24(6): 298-301.

    [13]

    Cheatham J A, Emmert J M, Baumgart S. A survey offault tolerant methodologies for FPGAs[J]. ACM Trans Actions on Design Automation of Electronic Systems, 2006, 11(2): 501-533.

    [14] 刘振来, 何湘宁. 压控器件的磁隔离驱动电路设计[J]. 电视技术, 2006, 6: 207-209.

    LIU Zhenlai, HE Xiangning. Design of magnetic isolation drive circuit for voltage control devices[J]. Television Technology, 2006, 6: 207-209.

    [15] 北京微电子技术研究所. 半导体集成电路B128S102RH型抗辐照12位A/D转换器应用指南[Z/OL]. [2023-11-15]. http://www.bmti.com.cn/index.html.

    BMTI. Application Guide for B128S102RH Anti Radiation 12 Bit A/D Converter in Semiconductor Integrated Circuit[Z/OL]. [2023-11-15]. http://www.bmti.com.cn/index.html.

    [16] 彭锐, 蔡小五, 刘海南, 等. 一种用于磁隔离驱动电路的编解码方案设计[J]. 微电子学与计算机, 2018, 9: 48-52.

    PENG Rui, CAI Xiaowu, LIU Hainan, et al. Design of an encoding and decoding scheme for magnetic isolation drive circuits[J]. Microelectronics & Computer, 2018, 9: 48-52.

    [17] 罗海坤, 王永庆, 吴嗣亮. 基于压缩查找表的高精度正弦信号生成算法[J]. 系统工程与电子技术, 2012, 34(2): 249-252. DOI: 10.3969/j.issn.1001-506X.2012.02.06

    LUO Haikun, WANG Yongqing, WU Siliang. High precision sinusoidal signal generation algorithm based on compressed look-up table[J]. Systems Engineering and Electronic Technology, 2012, 34(2): 249-252. DOI: 10.3969/j.issn.1001-506X.2012.02.06

    [18] 文波, 孟令军, 张晓春, 等. 基于增量式PID算法的水温自动控制器设计[J]. 仪表技术与传感器, 2015, 12: 113-116. DOI: 10.3969/j.issn.1002-1841.2015.12.033

    WEN Bo, MENG Lingjun, ZHANG Xiaochun, et al. Design of water temperature aautomatic controller based on incremental PID algorithm[J]. Instrument Technology and Sensors, 2015, 12: 113-116. DOI: 10.3969/j.issn.1002-1841.2015.12.033

    [19] 黄勇强, 吴建华, 熊振华, 等. 基于继电反馈的伺服系统PID参数整定研究[J]. 机械制造, 2008, 532(46): 1-7.

    HUANG Yongqiang, WU Jianhua, XIONG Zhenhua, et al. Research on PID parameter tuning of servo system based on relay feedback[J]. Mechanical Manufacturing, 2008, 532(46): 1-7.

    [20] 崔海霞, 潘旭华, 毛莹. 热动力温控系统建模与仿真研究[J]. 计算机仿真, 2014, 31(7): 379-382. DOI: 10.3969/j.issn.1006-9348.2014.07.086

    CUI Haixia, PAN Xuhua, MAO Ying. Modeling and simulation of thermodynamic temperature control system[J]. Computer Simulation, 2014, 31(7): 379-382. DOI: 10.3969/j.issn.1006-9348.2014.07.086

    [21]

    Panda R C, Vijayan V, Sujatha V. Parameter estimation of integrating and time delay processed using single relay feedback test[J]. ISA Transactions, 2011, 50(4): 529-537. DOI: 10.1016/j.isatra.2011.06.004

    [22] 刘海, 王储东. 基于饱和继电反馈的模型参数辨识及PID控制器参数自整定[J]. 计算机与应用化学, 2012, 29(9): 1107-1110. DOI: 10.3969/j.issn.1001-4160.2012.09.017

    LIU Hai, WANG Chudong. Model parameter identification and PID controller parameter self-tuning based on saturated relay feedback[J] Computer and Applied Chemistry, 2012, 29(9): 1107-1110. DOI: 10.3969/j.issn.1001-4160.2012.09.017

    [23]

    Jeonguk B, Jietae L, Jin Su K. Relay feedback identification for processes under drift and noisy environments[J]. AIChE Journal, 2011, 57(7): 1809-1816. DOI: 10.1002/aic.12394

    [24]

    MILAN H. Shifting method for relay feedback identification and control of delayed systems[J]. WSEAS Transactions on Systems, 2012, 15: 39-48.

    [25] 路美娜, 陈迪虎, 李志伟, 等. 基于FPGA的星载HgCdTe探测器温控系统设计[J]. 大气与环境光学学报, 2019, 14(2): 89-96.

    LU Meina, CHEN Dihu, LI Zhiwei, et al. Design of the temperature control system of the satellite borne HgCdTe detector based on FPGA[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(2): 89-96.

    [26]

    Rob R, Tirian G O, Panoiu C. Temperature controlling system using embedded equipment [J]. IOP Conference Series, 2017, 163(1): 46.

  • 期刊类型引用(5)

    1. 何振鹏,魏星,黎柏春,闫方超,胡艺馨,刘勇,王智. 距离和雾对红外测温精度影响的补偿研究. 红外技术. 2024(06): 681-690 . 本站查看
    2. 张建华,张学俭. 测试距离对滩羊红外热成像测温的影响研究及误差校正. 宁夏农林科技. 2023(12): 54-57+65 . 百度学术
    3. 杨断利,张然,陈辉,鲍惠玲,宣凤苓,高媛. 蛋鸡羽毛覆盖度计算及其与体温关系研究. 农业机械学报. 2022(10): 242-251+276 . 百度学术
    4. 张建华,李锋,张学俭. 红外热成像技术在畜禽养殖中的应用研究进展. 宁夏农林科技. 2022(09): 52-58 . 百度学术
    5. 杜玉玺,胡振琪,葛运航,黄华,陈瑞涛,汪勇,王志萌. 距离对不同强度热源红外测温影响及补偿. 红外技术. 2019(10): 976-981 . 本站查看

    其他类型引用(4)

图(14)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  2
  • PDF下载量:  14
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2024-01-17
  • 刊出日期:  2024-11-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日