基于近红外光谱的舌诊疾病识别的研究
Research on Discrimination of Tongue Diseases with Near Infrared Spectroscopy
-
摘要: 为了对中医舌诊的客观化研究,提出了应用近红外光谱分析技术快速无创的对健康人、冠心病、糖尿病和肝炎患者的不同人群的舌诊近红外光谱进行识别的新方法.首先对98个样本光谱数据进行归一化处理,用主成分分析(PCA)方法得出的累计贡献率达99.88%的前8个主成分作为广义回归神经网络(GRNN)的输入变量,建立了舌诊近红外光谱的识别模型.利用该模型分别选取了18个不同人群的近红外光谱数据共72个样本用于神经网络的训练,余下的26个用于预测,当光滑因子为5/8时预测的最大误差为0.17342,最小误差为0,获得了较理想的预测精度.实验结果表明用PCA和GRNN相结合的方法对舌诊近红外光谱与疾病之间建立了较好的关联,对加强中医舌诊的客观化起到了很好的促进作用,为疾病的诊断提供了一种新的方法.