Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
XUE Xirui, HUANG Shucai, MA Jiashun, LI Ning. RPCA Infrared Small Target Detection Based on Local Entropy Reference in Preprocessing[J]. Infrared Technology , 2021, 43(7): 649-657.
Citation: XUE Xirui, HUANG Shucai, MA Jiashun, LI Ning. RPCA Infrared Small Target Detection Based on Local Entropy Reference in Preprocessing[J]. Infrared Technology , 2021, 43(7): 649-657.

RPCA Infrared Small Target Detection Based on Local Entropy Reference in Preprocessing

  • Received Date: 2020-10-06
  • Rev Recd Date: 2020-11-06
  • Publish Date: 2021-07-01
  • Based on the non-local similarity of images, the use of image block recombination to obtain low-rank block images is the basic method for applying robust principal component analysis (RPCA) for infrared small target detection involving single-frame image. This paper introduces the process of applying the RPCA algorithm in infrared small target detection involving single-frame images and analyzes the influence of various blocking methods under different image backgrounds. To address the difficulty of selecting the image block window and sliding step size under a complex background, a selection method based on the larger value of the minimum local entropy of the image block is proposed. The experimental results show that by calculating the block local entropy of the image, taking the larger value of the minimum local entropy as a reference, and selecting the RPCA algorithm preprocessing scheme, better results can be achieved in the detection of small targets in a single frame of infrared images. This addresses the lack of experience of engineering personnel with regard to the application of the RPCA algorithm.
  • loading
  • [1]
    Dehghani A, Pourmohammad A. Small target detection and tracking based on the background elimination and Kalman filter[C]//2015 The International Symposium on Artificial Intelligence and Signal Processing, 2015: 328-333.
    [2]
    YANG C, MA J, QI S, et al. Directional support value of Gaussian transformation for infrared small target detection[J]. Applied Optics, 2015, 54(9): 2255-2265. doi:  10.1364/AO.54.002255
    [3]
    WU S C, ZUO Z R. Small target detection in infrared images using deep convolutional neural networks[J]. Journal of Infrared and Millimeter Waves, 2019, 38(3): 371-380.
    [4]
    Deshpande S D, Er M H, Venkateswarlu R, et al. Max-mean and max-median filters for detection of small targets[C]//Signal and Data Processing of Small Targets 1999. International Society for Optics and Photonics, 1999, 3809: 74-83.
    [5]
    WANG P, TIAN J W, GAO C Q. Infrared small target detection using directional highpass filters based on ls-svm[J]. Electronics Letters, 2009, 45(3): 156-158. doi:  10.1049/el:20092206
    [6]
    ZHANG H, LEI Z H, DING XH. An improved method of median filter[J]. Journal of Image and Graphics, 2004, 9(4): 408-411. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGTB200404004.htm
    [7]
    BAI X Z, ZHOU F G, XIE Y C, et al. Modified top-hat transformation based on contour structuring element to detect infrared small target[C]//IEEE Conference on Industrial Electronics and Applications, 2008, 3: 575-579.
    [8]
    Wright J, Allen Y, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. doi:  10.1109/TPAMI.2008.79
    [9]
    史加荣, 郑秀云, 周水生. 矩阵补全算法研究进展[J]. 计算机科学, 2014, 41(4): 13-20. doi:  10.3969/j.issn.1002-137X.2014.04.003

    SHI J R, ZHENG X Y, ZHOU S S. Research Progress in Matrix Completion Algorithms[J]. Computer Science, 2014, 41(4): 13-20. doi:  10.3969/j.issn.1002-137X.2014.04.003
    [10]
    陈川, 纪晓佳, 陈柘. 基于低秩矩阵恢复交通视频背景重建性能评价[J]. 计算机工程与设计, 2017, 38(5): 1301-1318. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201705034.htm

    CHEN C, JI X J, CHEN Z. Performance Evaluation of Traffic Video Background Reconstruction Based on Low-rank Matrix Recovery[J]. Computer Engineering and Design, 2017, 38(5): 1301-1318. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201705034.htm
    [11]
    杨敏, 安振英. 基于低秩矩阵恢复的视频背景建模[J]. 南京邮电大学学报, 2013, 33(2): 86-96. doi:  10.3969/j.issn.1673-5439.2013.02.015

    YANG M, AN Z Y. Video Background Modeling Using Low-rank Matrix Recovery[J]. Journal of Nanjing University of Posts and Telecommunications, 2013, 33(2): 86-96. doi:  10.3969/j.issn.1673-5439.2013.02.015
    [12]
    GAO C Q, MENG D Y, YANG Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009. doi:  10.1109/TIP.2013.2281420
    [13]
    EfrosA A, Leung T K. Texture synthesis by non-parametric sampling[C]//Proceedings of the seventh IEEE international conference on computer vision, 1999: 1033-1038.
    [14]
    马铭阳, 王德江, 孙翯, 等. 基于稳健主成分分析和多点恒虚警的红外弱小目标检测[J]. 光学学报, 2019, 39(8): 0810001-1-0810001-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201908013.htm

    MA M Y, WANG D J, SUN H, et al. Infrared Dim-Small Target Detection Based on Robust Principal Component Analysis and Multi-Point Constant False Alarm[J]. Acta Optica Sinica, 2019, 39(8): 0810001-1-0810001-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201908013.htm
    [15]
    樊俊良, 高永明, 吴止锾, 等. 基于RPCA的单帧红外小目标检测算法[J]. 兵器装备工程学报, 2018, 39(11): 147-151. doi:  10.11809/bqzbgcxb2018.11.032

    FAN J L, GAO Y M, WU Z H, et al. Detection Algorithm of Single Frame Infrared Small Target Based on RPCA[J]. Journal of Ordnance Equipment Engineering, 2018, 39(11): 147-151. doi:  10.11809/bqzbgcxb2018.11.032
    [16]
    Wright J, Peng Y G, Ma Y, et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization[J]. Advances in Neural Information Processing Systems, 2009, 87(4): 3-56.
    [17]
    Danelljan M, Khan FS, Felsberg M, et al, Adaptive color attributes for real-time visual tracking[C]//CVPR, 2014: 1090-1097.
    [18]
    史加荣, 郑秀云, 魏宗田, 等. 低秩矩阵恢复算法综述[J]. 计算机应用研究, 2013, 30(6): 1601-1605. doi:  10.3969/j.issn.1001-3695.2013.06.001

    SHI J R, ZHENG X Y, WEI Z T, et al. Survey on Algorithms of Low-rank Matrix Recovery[J]. Application Research of Computers, 2013, 30(6): 1601-1605. doi:  10.3969/j.issn.1001-3695.2013.06.001
    [19]
    杜秀丽, 胡兴, 陈波, 等. 基于加权非局部相似性的视频压缩感知多假设重构算法[J]. 计算机科学, 2019, 46(1): 291-296. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201901046.htm

    DU X L, HU X, CHEN B, et al. Multi-hypothesis Reconstruction Algorithm of DCVS Based on Weighted Non-local Similarity[J]. Computer Science, 2019, 46(1): 291-296. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201901046.htm
    [20]
    陈湘凭, 王志成, 田金文. 基于局部梯度和局部熵的红外小目标融合检测[J]. 计算机与数字工程, 2006, 34(10): 1-4. doi:  10.3969/j.issn.1672-9722.2006.10.001

    CHEN X P, WANG Z C, TIAN J W. Fusion Detection of Small Infrared Target Based on Local Entropy and Local Gradient Strength[J]. Computer & Digital Engineering, 2006, 34(10): 1-4. doi:  10.3969/j.issn.1672-9722.2006.10.001
    [21]
    毛羽忻, 杨俊强, 曲劲松, 等. 基于局部熵的点目标检测算法分析[J]. 火炮发射与控制学报, 2014, 35(3): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201403009.htm

    MAO Y X, YANG J Q, QU J S, et al. Analysis for Dot Target Detection Based on Local Entropy Algorithm[J]. Journal of Gun Launch & Control, 2014, 35(3): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201403009.htm
    [22]
    ZHANG Y X, LI L, XIN Y H. Infrared Small Target Detection Based on Adaptive Double-layer TDLMS Filter[J]. Acta Photonica Sinica, 2019, 48(9): 091001. http://en.cnki.com.cn/Article_en/CJFDTotal-GZXB201909023.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (300) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return