Volume 46 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
TONG Xin, LI Jiapeng, QIU Jie, XIA Ming, HUAI Yang, XIE Kunyuan, CHEN Junyuan. Numerical and Experimental Study of Flow Characteristics and Cooling Performance of Micro Miniature Refrigerators[J]. Infrared Technology , 2024, 46(4): 467-474.
Citation: TONG Xin, LI Jiapeng, QIU Jie, XIA Ming, HUAI Yang, XIE Kunyuan, CHEN Junyuan. Numerical and Experimental Study of Flow Characteristics and Cooling Performance of Micro Miniature Refrigerators[J]. Infrared Technology , 2024, 46(4): 467-474.

Numerical and Experimental Study of Flow Characteristics and Cooling Performance of Micro Miniature Refrigerators

  • Received Date: 2023-09-23
  • Rev Recd Date: 2023-10-23
  • Publish Date: 2024-04-20
  • The micro miniature refrigerator (MMR) is a novel Joule-Thomson cryocooler manufactured using micromachining technology, and its axial length is significantly shorter than that of traditional Joule-Thomson cryocoolers used in infrared detectors. MMRs can significantly reduce the size of infrared detectors when they are successfully integrated. To study the working mechanism of MMRs, a microchannel flow calculation model is established considering the high working pressure and significant change in the gas properties along the microchannels, and the calculation model is verified experimentally. The heat transfer characteristics, microchannel distribution, and overall dimensions of the MMRs are further investigated. Furthermore, an MMR prototype is fabricated based on the calculation results and its cooling performance is studied experimentally. The experimental results correspond well to the predictions of the calculation model. The MMR prototype achieved cooling temperatures of 110 K and 119 K under 10 MPa N2 and Ar working conditions, the cooling power reaches 231 mW and 479 mW, and the cool-down times are 250 s and 70 s, respectively. Consequently, the cooling performance of the MMR prototype is superior to that of the foreign MMR and meets the cooling requirements of infrared detectors.
  • loading
  • [1]
    李家鹏. 带有预冷级的波纹管自调式快速节流制冷器的研究[D]. 北京: 中国兵器科学院, 2016.

    LI J P. Research on Bellows Self Adjusting Rapid Throttling Refrigerator with Pre cooling Stage[D]. Beijing: Chinese Academy of Ordnance Sciences, 2016.
    [2]
    Little W A. Design and construction of microminiature cryogenic refrigerators, future trends in superconducting electronics[C]// Proc. of APS Conf., 1978, 44: 421-424.
    [3]
    陈国邦. 最新低温制冷技术[M]. 北京: 机械工业出版社, 2003.

    CHEN G B. Low Temperature Engineering Materials[M]. Beijing: China Machine Press, 2003.
    [4]
    Larry D, Capara. Microelectronic System with Integral Cryocooler, and Its Fabrication and Use: US, 6621071 B2[P]. 2003-9-16.
    [5]
    Dominique C, Cottereau. Joule-Thomson Cooler: US, 6202422 B1[P]. 2001-3-20.
    [6]
    Ike C, Ambrose. Stacked Multistage Joule-Thomson Cryostat: US, 5590538[P]. 1997-1-7.
    [7]
    Beskok A, Karniadakis G E, Trimmer W. Rarefaction and compressibility effects in gas microflows[J]. Fluid Engineering, 1996, 118: 448-455. doi:  10.1115/1.2817779
    [8]
    Berg H R, Seldam C A, Gulik P S. Compressible Laminar flow in a capillary[J]. Fluid Mechanics, 1993, 246: 1-20. doi:  10.1017/S0022112093000011
    [9]
    Harley J C, Huang Y F, Bau H H, et al. Gas Flow in Microchannels[J]. Journal of Fluid Mechanics, 1995, 284: 257-274. doi:  10.1017/S0022112095000358
    [10]
    Tae W K, Tae S P. Size effect on compressible flow and heat transfer in microtube with rarefaction and viscous dissipation[J]. Numerical Heat Transfer, 2019, 76(11): 1-18.
    [11]
    Stephen E T, Lok C L, Mohammad F, et al. Experimental investigation of gas flow in microchannels[J]. Journal of Heat Transfer, 2004, 126: 753-763. doi:  10.1115/1.1797036
    [12]
    Arkilic E B, Breuer K S, Schmidt M A. Mass flow and tangential momentum accomodation in silicon micromachined channels[J]. Fluid Mech, 2001, 437: 29-43. doi:  10.1017/S0022112001004128
    [13]
    WU P Y, Little W A. Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators[J]. Cryogenics, 1983: 273-277(DOI:  10.1016/0011-2275(83)90150-9).
    [14]
    Marco S M, Han L S. A note on limiting laminar Nusselt number in ducts with constant temperature gradient by analogy to thin-plate theory[J]. Journal of Fluids Engineering, 1955, 77(5): 625-630.
    [15]
    李晓永, 王玲, 洪晓麦, 等. 微型节流制冷器降温时间的优化研究[J]. 真空与低温, 2021, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW202103011.htm

    LI X Y, WANG L, HONG X M, et al. The optimization on the cooldown time of a miniature JT cooler[J]. Vacuum and Cryogenics, 2021, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW202103011.htm
    [16]
    Hsieh C K, SU K C. Thermal radiative properties of glass from 0.32 to 206 μm[J]. Solar Energy, 1979, 22(1): 37-43. doi:  10.1016/0038-092X(79)90057-4
    [17]
    CAO H S, Vanapalli S, Holland H J, et al. Characterization of a thermoelectric/Joule-Thomson hybrid microcooler[J]. Cryogenics, 2016, 77: 36-42. doi:  10.1016/j.cryogenics.2016.04.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (19) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return